Operating Systems (Fall 2014): Difference between revisions
(10 intermediate revisions by the same user not shown) | |||
Line 214: | Line 214: | ||
</td> | </td> | ||
<td> | <td> | ||
<p>[[Operating Systems 2014F Lecture 18|Lecture 18]]: [http://pages.cs.wisc.edu/~remzi/OSTEP/file-raid.pdf RAID], [http://pages.cs.wisc.edu/~remzi/OSTEP/file-lfs.pdf Log-structured FS] | <p>[[Operating Systems 2014F Lecture 18|Lecture 18]]: [http://pages.cs.wisc.edu/~remzi/OSTEP/file-raid.pdf RAID], [http://pages.cs.wisc.edu/~remzi/OSTEP/file-lfs.pdf Log-structured FS] (optional readings) | ||
</p> | </p> | ||
</td> | </td> | ||
Line 234: | Line 234: | ||
</td> | </td> | ||
<td> | <td> | ||
<p>[[Operating Systems 2014F Lecture 20|Lecture 20]]: [http://pages.cs.wisc.edu/~remzi/OSTEP/dist-intro.pdf Distributed Systems], [http://pages.cs.wisc.edu/~remzi/OSTEP/vm-beyondphys.pdf Swapping: Mechanisms], [http://pages.cs.wisc.edu/~remzi/OSTEP/vm-beyondphys-policy.pdf Swapping: Policies | <p>[[Operating Systems 2014F Lecture 20|Lecture 20]]: [http://pages.cs.wisc.edu/~remzi/OSTEP/dist-intro.pdf Distributed Systems], [http://pages.cs.wisc.edu/~remzi/OSTEP/vm-beyondphys.pdf Swapping: Mechanisms], [http://pages.cs.wisc.edu/~remzi/OSTEP/vm-beyondphys-policy.pdf Swapping: Policies] | ||
</p> | </p> | ||
Line 245: | Line 245: | ||
</td> | </td> | ||
<td> | <td> | ||
<p>[[Operating Systems 2014F Lecture 21|Lecture 21]]: [http://pages.cs.wisc.edu/~remzi/OSTEP/dist-nfs.pdf NFS], [http://pages.cs.wisc.edu/~remzi/OSTEP/dist-afs.pdf AFS] | <p>[[Operating Systems 2014F Lecture 21|Lecture 21]]: [http://pages.cs.wisc.edu/~remzi/OSTEP/dist-nfs.pdf NFS], [http://pages.cs.wisc.edu/~remzi/OSTEP/dist-afs.pdf AFS] (optional readings) | ||
</p> | </p> | ||
</td> | </td> | ||
Line 255: | Line 255: | ||
</td> | </td> | ||
<td> | <td> | ||
<p>[[Operating Systems 2014F Lecture 22|Lecture 22]]: | <p>[[Operating Systems 2014F Lecture 22|Lecture 22]]: Assignment Solutions 1 | ||
</p> | </p> | ||
</td> | </td> | ||
Line 265: | Line 265: | ||
</td> | </td> | ||
<td> | <td> | ||
<p>[[Operating Systems 2014F Lecture 23|Lecture 23]]: | <p>[[Operating Systems 2014F Lecture 23|Lecture 23]]: Assignment Solutions 2 | ||
</p> | </p> | ||
</td> | </td> | ||
Line 271: | Line 271: | ||
<tr> | <tr> | ||
<td> | <td> | ||
<p> | <p>Dec. 9, 1 PM | ||
</p> | </p> | ||
</td> | </td> | ||
<td> | <td> | ||
<p>Final Exam | <p>[[Operating Systems 2014F Final Exam Review|Review Session]] in ME 3275 | ||
</p> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td> | |||
<p>Dec. 14, 2 PM | |||
</p> | |||
</td> | |||
<td> | |||
<p>Final Exam in FH rows 20-25 ([http://homeostasis.scs.carleton.ca/~soma/os-2014f/solutions/comp3000-final-2014F-sol.pdf solutions]) | |||
</p> | </p> | ||
</td> | </td> | ||
Line 479: | Line 489: | ||
<tr> | <tr> | ||
<td> | <td> | ||
<p>Nov. | <p>Nov. 20 | ||
</p> | </p> | ||
</td> | </td> | ||
Line 489: | Line 499: | ||
<tr> | <tr> | ||
<td> | <td> | ||
<p>Nov. | <p>Nov. 27 | ||
</p> | </p> | ||
</td> | </td> | ||
Line 499: | Line 509: | ||
<tr> | <tr> | ||
<td> | <td> | ||
<p>Dec. | <p>Dec. 4 | ||
</p> | </p> | ||
</td> | </td> |
Latest revision as of 17:09, 16 December 2014
Course Outline
Here is the course outline for COMP 3000: Operating Systems.
Lectures and Exams
Note that the topics below are primarily chapters from the class textbook, Operating Systems: Three Easy Pieces. Note that while introductory and summary dialogues are not linked below, they are worth reading for an informal take on the material.
Date |
Topic |
---|---|
Sept. 5 |
|
Sept. 10 |
|
Sept. 12 |
|
Sept. 17 |
|
Sept. 19 |
|
Sept. 24 |
|
Sept. 26 |
|
Oct. 1 |
|
Oct. 3 |
|
Oct. 8 |
|
Oct. 10 |
Lecture 11: Condition Variables, Semaphores, Concurrency Problems |
Oct. 15 |
|
Oct. 17 |
Lecture 13: Midterm Review |
Oct. 22 |
Midterm (in class) |
Oct. 24 |
|
Nov. 5 |
|
Nov. 7 |
|
Nov. 12 |
|
Nov. 14 |
|
Nov. 19 |
Lecture 18: RAID, Log-structured FS (optional readings) |
Nov. 21 |
|
Nov. 26 |
Lecture 20: Distributed Systems, Swapping: Mechanisms, Swapping: Policies |
Nov. 28 |
Lecture 21: NFS, AFS (optional readings) |
Dec. 3 |
Lecture 22: Assignment Solutions 1 |
Dec. 5 |
Lecture 23: Assignment Solutions 2 |
Dec. 9, 1 PM |
Review Session in ME 3275 |
Dec. 14, 2 PM |
Final Exam in FH rows 20-25 (solutions) |
Tutorials
Each week you will get a progress grade from 0-4, given to you by a TA. If you are being diligent, you should be able to get 4's every week. The easiest way to get your grade is to come to tutorial and meet with your TA; alternately, you can meet a TA in their office hours or, at their discretion, discuss things with them online.
Date |
Tutorials |
---|---|
Sept. 5,8 |
|
Sept. 12, 15 |
|
Sept. 19, 22 |
|
Sept. 26, 29 |
|
Oct. 3, 6 |
|
Oct. 10 |
(Optional) Continue Tutorial 5 and help with Assignment 5 |
Oct. 17, 20 |
Review |
Nov. 7, 10 |
|
Nov. 14, 17 |
|
Nov. 21, 24 |
|
Nov. 28, Dec. 1 |
Assignments
Due Date |
Assignments |
---|---|
Sept. 10 |
|
Sept. 17 |
|
Sept. 24 |
|
Oct. 4 (extended) |
|
Oct. 16 (Thurs.) |
|
Nov. 12 |
|
Nov. 20 |
|
Nov. 27 |
|
Dec. 4 |
Course Software
In this course we will primarily working with Lubuntu, a low-resource variant of Ubuntu Linux distribution. You may use other Linux distributions in the tutorials to complete the assigned work; there will be differences, however, in some aspects (such as installing software), particularly if you use a distribution not based on Ubuntu or Debian.
In the labs
In the SCS labs you should be able to run the course VM by starting Virtualbox (listed in the Applications menu) and selecting the COMP 2406/3000 virtual machine image. After the VM has fully booted you will be automatically logged into the student account; this account has admin privileges and its password is "tneduts!".
We highly recommend running your VM in full-screen mode (select from the menu, not by maximizing the window). Do all of your work inside of the VM; it should be fast enough and you won't have any issues with sharing files or with firewalls/network connectivity.
You can save the work you do from the course VM (in the student account) to your SCS account and restore it to any other copy of the class VM (on your machines or in the labs) by running using the following commands:
save3000 <SCS username> restore3000 <SCS username> compare3000 <SCS username>
If you use these commands, use them consistently. That means run restore3000 when you first log in, and run save3000 just before logging out. If you don't do this, you will erase the work that you had done previously when you save.
If you forgot to restore and you want to save, try running this:
rsync -a -v --progress ~/ <SCS username>@access.scs.carleton.ca:COMP3000/
This is the same as the save3000 command minus the options (--delete and --force) that deletes files in the destination that don't exist in the source. As a check, you may want to add the -n option to do a dry run.
Running the VM on your own machines
If you want to run the VM appliance on your own system (running essentially any desktop operating system you want), just download the virtual appliance file and import. The SHA1 hash of this file is:
e5613881b28be41f49b82730282d40093388ee71 COMP 2406-3000 Fall 2014.ova
On Windows you can compute this hash for your downloaded file using the command FCIV -sha1 COMP 2406-3000 Fall 2014.ova. If the hash is different from above, your download has been corrupted.
If the application is not VirtualBox, you'll need to:
- Have the VM platform ignore any errors in the structure of the appliance found during the import process;
- Uninstall the VirtualBox guest additions by typing starting a terminal application and running
sudo apt-get purge virtualbox-guest-x11 virtualbox-guest-utils
- Install your platform's own Linux guest additions, if available.