
The undersigned hereby recommend to

the Faculty of Graduate Studies and Research

acceptance of the thesis,

JaSPIn: JavaScript based Anomaly Detection

of

Cross-site scripting attacks

submitted by

Preeti Raman

Dr. Douglas Howe

(Director, School of Computer Science)

Dr. Anil Somayaji

(Thesis Supervisor)

Carleton University

September 2008

JASPIN: JAVASCRIPT BASED ANOMALY DETECTION OF

CROSS-SITE SCRIPTING ATTACKS

by

Preeti Raman

A thesis submitted to

the Faculty of Graduate Studies and Research

in partial fulfillment of

the requirements for the degree of

MASTER OF COMPUTER SCIENCE

School of Computer Science

at

CARLETON UNIVERSITY

Ottawa, Ontario

September, 2008

c© Copyright by Preeti Raman, 2008

Table of Contents

List of Tables vi

List of Figures vii

Abstract ix

Acknowledgements x

Chapter 1 Introduction 1

1.1 JavaScript Attacks . 2

1.2 JaSPIn . 3

1.3 Contributions . 4

1.4 Thesis Outline . 5

Chapter 2 Background and Related Work 7

2.1 Understanding JavaScript . 7

2.1.1 JavaScript Language Features 7

2.1.2 JavaScript in web pages . 9

2.1.3 JavaScript Security Model . 12

2.2 JavaScript based attacks . 14

2.3 Cross-site attacks . 14

2.3.1 Cross-site scripting attacks . 14

2.3.2 Dangers of XSS vulnerabilities 16

2.3.3 XSS Types . 21

2.3.4 Cross Site Request Forgery . 21

2.3.5 Evolution of cross-site attacks 23

2.4 Current browser security mechanisms and their limitations 26

2.4.1 Zone security . 26

2.4.2 XSS Filter . 26

ii

2.4.3 Disabling JavScript . 27

2.5 XSS attack detection and prevention techniques 28

2.5.1 Server side defenses against XSS attacks 29

2.5.2 Client side defenses against XSS attacks 35

2.6 Relevance of Intrusion Detection to cross-site attack detection 39

2.6.1 Overview of Intrusion Detection Systems 40

2.6.2 Types of intrusion detection systems based on data source . . 40

2.6.3 Types of intrusion detection systems based on detection approach 41

2.6.4 Anomaly detection approaches 42

2.7 Summary . 43

Chapter 3 Modeling JavaScript Methods 46

3.1 Overview . 46

3.2 Threat Model . 47

3.3 Description . 49

3.3.1 Choice of Algorithm . 49

3.3.2 Profile Generation . 50

3.3.3 Profiling a complete web site 52

3.3.4 Detecting Anomalous Behavior 54

3.4 Analysis . 54

3.5 Summary . 55

Chapter 4 Implementation 56

4.1 Understanding Mozilla Firefox . 56

4.1.1 SpiderMonkey . 57

4.1.2 XPCOM . 59

4.1.3 XPConnect . 59

4.2 System Architecture . 59

4.3 Implementation . 62

4.3.1 Changes to SpiderMonkey . 63

4.3.2 Browser Extension . 64

iii

Chapter 5 Results 68

5.1 Data Source . 69

5.2 Choice of Parameters . 69

5.2.1 Window Size . 70

5.2.2 Stability Threshold . 71

5.3 Profile stabilization . 71

5.4 False Positives . 73

5.5 Overhead . 76

5.6 Profile diversity - Internet web surfing simulation 77

5.7 Simulated Exploits . 79

5.8 Targeted attacks . 80

5.8.1 phpBB 2.0.19 . 80

5.8.2 WebCal (v1.11-v3.04) . 81

5.8.3 Flash enabled JavaScript attacks 82

5.9 Summary . 83

Chapter 6 Discussion 84

6.1 Summary of results . 84

6.2 Contributions . 85

6.3 Limitations . 87

6.3.1 Limitations of the approach 87

6.3.2 Limitation of our current implementation 89

6.4 Future Work . 90

6.4.1 Resistance to mimicry attacks 90

6.4.2 Reduction of the false positive rate 90

6.4.3 Detection of other JavaScript attacks 90

6.4.4 Usability . 91

Chapter 7 Conclusion 92

Appendix A Appendix A - Common JavaScript Methods 93

iv

Appendix B Profile and Map file Sample 98

Appendix C List of web sites used in our evaluations of JaSPIn 100

Appendix D List of attacks used in our evaluations of JaSPIn 103

Bibliography 106

v

List of Tables

Table 2.2 Different Server side XSS defenses suggested over the years . . 30

Table 2.4 Client side XSS defenses . 36

Table 2.5 Additional effort to deploy different XSS defenses 44

Table 5.2 Summary of tests conducted using JaSPIn 68

Table 5.3 Effect of varying window sizes on the number of visits to achieve

profile stability with a threshold of three 70

Table 5.4 The number of visits for some sample websites for a stable profile

to be generated . 71

Table 5.5 Average false positive rate across visits for websites 74

Table 5.6 Space requirements for profile and map files 76

Table 5.8 Cross-site attacks detected by JaSPIn 80

A.1 JavaScript objects and methods 93

C.1 Websites profiled during evaluation of JaSPIn 100

D.1 Attacks tested . 103

vi

List of Figures

Figure 2.1 JavaScript object hierarchy . 9

Figure 2.2 Propagation of Samy by exploiting an XSS flaw 15

Figure 2.3 JPMorgan Chase.com XSS flaw exposed 19

Figure 2.4 History of Cross-site attacks alongside the evolution of the web 23

Figure 2.5 A static 1992 web page, which is an updated version of the first

web page on the internet . 24

Figure 2.6 The Google Calendar is a good example of a popular web ap-

plication used today . 25

Figure 2.7 Current solution to set security policies for websites in Internet

Explorer 6 and 7. 27

Figure 2.8 Online banking website with JavaScript enabled. 28

Figure 2.9 Online banking website with JavaScript disabled. No function-

ality is available as well. 29

Figure 3.1 Finding proximity similarity between two web pages in the same

domain . 53

Figure 4.1 Architecture of Mozilla . 57

Figure 4.2 Struct definition for storing each profile 64

Figure 4.3 JaSPIn extension . 66

Figure 4.4 Configuring JaSPIn using the extension. 66

Figure 4.5 Alert while using JaSPIn . 67

Figure 5.1 This graph shows the number of sequences observed per web

site over a period of 50 visits. There are varying number of

sequences in each web site’s profile. The first visit generates a

brand new policy, and the next few visits stabilize that policy. 73

vii

Figure 5.2 This graph shows the false positive rates across different sites

plotted against the total number of visits to those sites in 3

months. 75

Figure 5.3 This graph shows the number of profiles containing each se-

quence of length 6 sorted by frequency. There are 25 profiles

created from different visits to http://www.yahoo.com, which

in total contain 449 unique sequences. 78

Figure 5.4 Preferences for the forum . 81

Figure 5.5 Exploit code for phpBB . 81

Figure 5.6 JaSPIn is able to detect the documented XSS exploit on phpBB 82

Figure 5.7 Sample attack against WebCal 82

Figure 5.8 WebCal anomalies . 82

Figure 5.9 Flash getURL function usage 83

Figure 5.10 Using the getURL function to launch a XSS attack. 83

Figure B.1 Part of a map file . 98

Figure B.2 Part of a sample profile file . 99

viii

Abstract

The increasing use of sophisticated JavaScript in web applications has led to the

widespread exploitation of cross-site scripting (XSS) flaws. We present an anomaly

detection-based approach for detecting cross-site attacks. JaSPIn is based on the

observation that the patterns of JavaScript methods invoked by web sites is extremely

consistent, even for complex AJAX-driven applications. Thus, web page behaviorial

profiles can be generated by recording the methods executed when legitimate content

is displayed. These profiles can then be used to constrain JavaScript behavior so that

XSS attacks cannot succeed. In experiments using JaSPIn implemented in Mozilla

Firefox, we found that it generates stable website JavaScript profiles in few visits,

and was subsequently able to detect a range of XSS attacks.

ix

Acknowledgements

I wish to express my sincere thanks and appreciation to my advisor, Dr. Anil Somayaji

for his attention, guidance, insight, patience and support during this research and the

preparation of this thesis. In addition, special thanks are due to Dr. Paul Van Oorshot

and Dr. Liam Peyton for their constructive comments and suggestions to the initial

versions of this writing. I also would like to thank Dr. Evangelos Kranakis for serving

on my committee and Dr David Mould for chairing my defense. Many thanks to the

researchers at the Carleton Computer Security Lab for their interesting comments

and suggestions. I also would like to thank RIM for funding this work.

Finally, I would like to thank my parents for their constant encouragement, my

brother, Vinay for giving me company on those long nights and Aditya and Nemo for

always putting a smile back on my face. I cannot finish without saying how grateful

I am to have my unbelievably supportive and loving husband Abhay in my life.

x

Chapter 1

Introduction

The World Wide Web is an important medium of communication today. It has

evolved from a static medium with user interaction limited to navigation between

web pages to a highly interactive medium serving up personalized content. Web

users can email, search, blog, chat, stream videos, play online games and shop on the

Internet. Web applications are even used in security-critical environments, such as

medical, financial, and military systems. This popularity of the web is enabled by

various technologies that have evolved along with the growth of the World Wide Web.

One such technology, JavaScript [Fla98], is widely used to enable the interactivity of

web pages. A 2006 United Nations global study showed that 73 percent of websites

surveyed relied on JavaScript for important functionality [Nom06].

JavaScript code is downloaded to the client computer as part of a web page and

executed automatically in the browser by an embedded interpreter. Such automati-

cally executed code could be malicious and potentially harm the user’s environment.

To protect the client from unauthorized access, a number of safeguards are built into

the browser to prevent JavaScript running in the browser from gaining access to local

machines. This mechanism is collectively referred to as the sandbox, a restricted area

in which JavaScript can execute. Client side JavaScript runs in its own sandbox, and

does not have access to anything outside the sandbox by design. Also, JavaScript

programs downloaded from different sites are protected from each other using the

same origin policy [Rud01] which permits code access only to resources associated

with its origin site.

An issue with current JavaScript security mechanisms is that scripts may adhere

to the same origin policy and be confined to their respective sandbox, but still be

able to launch an attack. This is possible when an attacker is able to trick the user

into downloading malicious JavaScript code from a web site trusted by the user. Such

1

2

JavaScript based attacks across sites are explained in the next section.

1.1 JavaScript Attacks

In the past couple of years, multiple attacks have been launched against websites

using JavaScript. The majority of these attacks use some form of cross site scripting

(XSS) or cross site request forgery (CSRF). Cross-site scripting (XSS) is an attack

against web applications in which scripting code is typically injected into the output

of an application that is then sent to a user’s web browser [VNJ+07]. This scripting

code executes in the browser with the privileges of the originating site, there by

circumventing the same origin policy of the web browser. Malicious JavaScript code

can then steal confidential user data, redirect the user to a different site, gain access

to local files, perform tasks with system privileges and even launch other attacks such

as SQL injection [SW06] and phishing [DTH06]. These attacks can cause damage

both to the end user and the web application host. Consider the case of a malicious

script stealing cookies stored by a banking site from a user’s browser. The attacker

can now not only cause financial damage to the user whose cookies were stolen, but

also tarnish the reputation of the bank, causing loss of money, time and customers to

the bank.

Cross-site Request Forgery (CSRF) [Law07] is an attack in which unauthorized

commands are transmitted to a web site from a trusted user. While XSS exploits the

trust a user has for a particular site, CSRF exploits the trust that a site has for a

particular user.

One of the reasons cross-site attacks are so prevalent is the enormous number

of freely available vulnerable web applications. Support from browsers in executing

the attacker’s JavaScript makes propagation of the attack easy and fast. JavaScript

vulnerabilities leading to cross site scripting attacks are the most common of all

publicly reported security vulnerabilities since 2005. [PFH03]. More than 25,000

sites have been discovered vulnerable to XSS attacks [FP07]. This is only a partial

account of the number of vulnerable sites, since there are a number of web-based

applications that have been developed internally by companies to provide customized

services that could be vulnerable to both XSS and CSRF attacks.

3

The most desirable way to prevent and fix XSS vulnerabilities is by fixing the

vulnerable code or to perform proper input validation. Of course, fixing the code

is not the easiest or even the most practical solution in many cases, given that web

pages today are dynamic and have multiple sources for advertisements, video, blog

trackbacks, polls and other features [OSW08]. Further, it takes time to develop and

test a patch for a newly discovered vulnerability, and it takes more time to patch third

party software used in a given web application. Many researchers have proposed server

side solutions to block XSS attacks without having to regularly fix the application

code [SS02b], [Inc02], [KKP03], [HYH+04], [Min05], [XBS06], [JKK06], [Cor06].

These approaches however leave the user completely vulnerable if the website has

not implemented any such measures. A complementary approach is to implement

attack detection mechanisms at the client. Browser based defenses require methods

to differentiate malicious JavaScript code downloaded from a trusted web site from

normal JavaScript code, or techniques to mitigate the impact of cross-site scripting

attacks. Various signature, policy and client side proxy based approaches [IEKY04],

[HV05], [KKVJ06], [YCIS07], [VNJ+07], [JSH07], [UELX07], [JB07] have been

proposed to detect cross-site attacks at the client. However, filter evasion techniques

allow XSS attacks to avade many of these systems.

Robust JavaScript level attack detection is possible in the browser because any

active content is executed only when the browser parses the content as a script. If

an attack bypasses the JavaScript interpreter, no attack occurs. Our current work

is based on the idea that when parsing scripts, if the browser is able to determine

which scripts are out of the ordinary and possibly malicious, it could detect and even

prevent cross site scripting attacks by disabling the execution of the script.

1.2 JaSPIn

We propose the first client side browser based defense, JaSPIn (JavaScript Profile

Inferer), that can detect a wide range of XSS attacks, including zero-day attacks,

using automatically generated web page profiles without using a whitelist. Further,

our proposed solution is immune to common filter evasion techniques and does not

require any changes to web applications.

4

Specifically, JaSPIn detects XSS attacks by building fine-grained JavaScript pro-

files for a given website. We have found that the pattern of JavaScript methods

invoked by a web page is very consistent, even for complex AJAX-driven websites.

Thus, specific JavaScript security profiles can be generated by recording the meth-

ods executed by a web page, including property getters and setters, when legitimate

content is displayed. Such profiles can then be used to constrain JavaScript behav-

ior, thereby preventing XSS attacks. The system consists of two phases: the training

phase during which web page profiles are created and the attack detection phase. Our

system is based on the principle that any attack will generate an abnormal sequence

of JavaScript method invocations, thereby violating the previously built profile of a

web page.

1.3 Contributions

JaSPIn shows that monitoring JavaScript execution is effective at detecting XSS

attacks and practical, in that it can be performed online in real-time with a minimum

overhead. There are several advantages of our JavaScript based anomaly detection

defense as explained below.

No changes to existing applications: More than 70 percent of the 172 million

sites on the web today [Net08] use JavaScript. It is practically impossible for any

solution requiring changes to every web page in every web site to be well adopted.

Thus, our proposal requires absolutely no change to web pages, and no configuration

changes on the web server.

Automated generation of stable profiles: Web site specific profiles are built

based on the user’s browsing patterns. Thus, JaSPIn does not depend on either the

end user, or the website programmer to generate profiles or policies manually.

Immunity to Filter Evasion Techniques: Various filters can be evaded by

encoding the input into something that the browser understands and is completely

valid for the filter. JaSPIn checks for profile violations in the browser at the level of

the JavaScript interpreter just before the script executes. Thus filter evading attacks

with complex signatures do not fool our XSS detector.

Attack Coverage: The main advantage of our anomaly based approach is that

5

it does not require prior knowledge of the attacks and can thus detect new intrusions.

A cross-site attack actually happens only when the attack code executes. Hence, our

anomaly detection engine cannot miss verifying any method invocation. It can even

detect advanced attacks vectors not based on input validations such as DNS pinning

[Fog07] and the more recent MHTML XSS vulnerability [Fog07]. Although, it is

possible for the attacker to mimic normal behavior and craft function calls to execute

in the same order as in the profile of a website, such a targeted attack requires way

more effort and customization of the attack code.

No whitelists: Generating and maintaining whitelists are cumbersome. Also,

approaches which use a whitelist of safe sites to reduce the number of false alarms

are opening the XSS attack doors on such sites. In today’s linked web, a number

of sites purposely transfer information between one another, such as for analytics or

advertisements. In such cases, a whitelist based solution would add all of these sites

to the list, thereby making vulnerabilities in them exploitable.

As a first step, we have modified the Mozilla Firefox browser to infer JavaScript

policies and create profiles of every website visited by a given user. Our anomaly

detection engine, JaSPIn has been successfully implemented in Mozilla Firefox. We

have found that once a profile has been created for a given web page and learning

complete, stability is achieved. Updates to the profile are required only when the web

site’s JavaScript calls are updated, or the user changes his browsing patterns, such

that they do not confer to his previous behavior. Also, our experiments have shown

that our technique is able to detect most XSS attacks, while keeping its false positive

rate relatively low.

1.4 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 provides background in-

formation on JavaScript and the security mechanisms currently in browsers. It also

explains what cross-site scripting means, and provides some examples of relevant at-

tacks. We also present two different types of attacks, which although different in

nature are similar in effect. It also introduces intrusion detection and reviews related

work, finding a place for our system both in the space of web application security and

6

anomaly detection. Chapter 3 discusses our method of analysing JavaScript method

invocations used in our system, JaSPIn.

Chapter 4 discusses the implementation of JaSPIn, which includes modifications

to the browser and the development of a plug-in to monitor the policies. Chapter 5

presents results showing how JaSPIn performs. We specifically focus on how good

the web profiles developed by JaSpin are in keeping the false positive rate low. This

chapter also analyses diverse types of websites and their effect on the functioning of

JaSPIn. We then present JaSPIn’s attack detection capabilities against some typical

real world cross site scripting attacks. The next chapter discusses our findings and

comments on the efficiency of JaSPIn, summarizing the contributions of this work

and suggesting areas of further work to address current shortcomings. We conclude

with a summary of this thesis in Chapter 7.

Chapter 2

Background and Related Work

This chapter provides background information on JavaScript and cross-site attacks.

The first section of this chapter gives a brief introduction to JavaScript outlining some

of the features of the language that indirectly aid cross-site attacks. The next section

takes a look at how web applications have evolved through the years, and describes

in parallel the history of cross-site attacks. We then describe the different classes

of such attacks and look at them in detail. False positives, false negatives, attack

coverage, ease of implementation and ease of use are important considerations when

selecting a defense strategy. This chapter looks at various approaches suggested to

defend against cross-site attacks. We then look at intrusion detection approaches and

suggest anomaly detection as a solution to address some of the limitations of previous

approaches.

2.1 Understanding JavaScript

JavaScript is a high level object based, cross-platform dynamically types language

with C-like syntax and Scheme like semantics. The most common use of JavaScript

is to add functionality to web pages as rendered within a browser; however JavaScript

is also used in web servers, flash applets and desktop applications. JavaScript was

standardized in the ECMAScript Language Specification, Third Edition [ECM99].

2.1.1 JavaScript Language Features

The core JavaScript language and its built-in data types are the subject of interna-

tional standards, and compatibility across implementations is very good. JavaScript

provides a complete range of basic programming statements, such as assignment state-

ments, if statements, loop statements, and others. JavaScript is a prototype-based

language [War01] in which classes are not present, and behavior reuse (known as

7

8

inheritance in class-based languages) is performed via a process of cloning existing

objects.

JavaScript Functions

Functions are one of the fundamental building blocks in JavaScript.

A JavaScript function definition consists of the function keyword, followed by

• the name of the function

• a list of parameters to the function, enclosed in parentheses, and separated by

commas

• the JavaScript statements that define the function, enclosed in curly braces,

For example, a simple function named printhello is shown below:

function printhello(string) {

document.write(" hello "+ string)

}

This function takes a string as its argument and displays a hello message.

Defining a function does not execute it, calling it explicitly does. For example, we

could call the printhello function as follows:

printhello(”Preeti”)

JavaScript Objects and Methods

JavaScript objects consists of properties and methods that enable operations on it.

Properties are variables that are only accessible via their object, and methods are

functions that are only accessible via their object. JavaScript requires all access to

properties and methods to go through the objects that contain them. Server-side

and client-side JavaScript have pre-defined objects that are specific to their runtime

environment. For example, alert() is a method of the window object.

A list of the most commonly used JavaScript methods can be found in Appendix

A.

9

2.1.2 JavaScript in web pages

A web browser provides an ECMAScript host environment for client-side computation

including, for instance, objects that represent windows, menus, pop-ups, dialog boxes,

text areas, anchors, frames, history, cookies, and input/output. Further, the host

environment provides a means to attach scripting code to events such as change of

focus, page and image loading, unloading, error and abort, selection, form submission,

and mouse actions. Scripting code appears within the HTML and the displayed page

is a combination of user interface elements and fixed and computed text and images.

The scripting code is reactive to user interaction and there is no need for a main

program.

Figure 2.1: JavaScript object hierarchy

Client-side JavaScript is, at its lowest level, several core objects that are created

when a page is loaded in the browser. In addition to these core objects, there are

also derived objects that are created when certain tags are included on a page. These

derived objects inherit some of the various characteristics of their parent object and

also allow scripting access to the HTML tags properties. Figure 2.1 gives a graphical

representation of the basic client-side JavaScript hierarchy. As shown, all client-side

objects are derived from either the Window or navigator objects. All objects on

a given page are constructed within the browsers window, hence all objects that

10

JavaScript can create are descendants of the Window object. JavaScript also has

the ability to control HTML objects such as forms, layers, div and frames using the

Document Object Model (DOM) [W3C04]; it even has access to parts of the browser

not related to HTML, for example, it can determine what version the browser is or

which platform the browser is running on. Thus, in JavaScript, methods form the

building blocks of accessing both predefined objects and user created objects.

Embedding JavaScript

JavaScript can be embedded in an HTML document in different ways as explained in

the sections below:

Using the SCRIPT tag The tags used to begin and end a script are the <SCRIPT>

and </SCRIPT> tags. These can be placed anywhere between the <HTML> and </HTML>

tags in a web page.The opening tag also includes an optional language attribute:

<SCRIPT language="JavaScript">

The language=”JavaScript” command is there so the browser can know that the

code that follows is in JavaScript and not another scripting language, such as VB-

Script. When absent, the browser interprets the code that follows the <SCRIPT> tag

as code in the latest version of JavaScript handled by that browser. Javascript code

follows this tag, and the </SCRIPT> tag is added at the end of the code segment:

<SCRIPT language="JavaScript">

........JavaScript Code...........

</SCRIPT>

Using an external source The SRC attribute of the <SCRIPT> tag is used to

specify a file as the JavaScript source (rather than embedding the JavaScript in the

HTML as in the section above). JavaScript files have a .js extension. For example:

11

<HEAD><TITLE>My Page</TITLE>

<SCRIPT SRC="myfunctions.js">...</SCRIPT>

</HEAD><BODY>...

This method of including JavaScript in a page is useful for sharing functions among

many different pages.

The SRC attribute can specify any URL, relative or absolute. For example:

<SCRIPT SRC="http://somewebsiste.com/functions.js">

External JavaScript files cannot contain any HTML tags, only JavaScript state-

ments and function definitions.

As event handlers Clicking a button , changing a text field or moving the mouse

over a hyperlink are examples of events. Scripts can be made to react to events by

defining event handlers such as onChange and onClick.

To create an event handler for an HTML tag, an event handler attribute is added

to the tag and JavaScript code is added as the value of that attribute.

<TAG eventHandler="JavaScript Code">

where TAG is an HTML tag and eventHandler is the name of the event handler.

For example, suppose you have created a JavaScript function called compute.

You can cause Navigator to perform this function when the user clicks a button by

assigning the function call to the button’s onClick event handler:

The following example modifies text to bold when the mouse is moved on top of

it.

<P ID="boldpara1"

onmouseover="document.all.boldpara1.style.fontWeight= ’bold’" >

This text will turn bold when the mouse cursor is placed on it.

</P>

12

Such multiple entry points for JavaScript make it difficult for the programmer to

attack-proof the web sites using input filtering techniques. On the other hand, an

attacker needs to find only that one vulnerable entry point to launch a successful

cross-site attack. The recent waves of phishing attacks which use cross-site scripting

vulnerabilities clearly show that there are many attackers on the Internet looking for

easy targets with a vulnerable entry point.

2.1.3 JavaScript Security Model

JavaScript’s security model is based upon Java. This section describes the two key

security models available in JavaScript: Sandboxing and the Same origin policy.

Sandboxing

Sandboxing [CER06] is a generic security term that applies to any environment that

reduces the privileges under which an application runs.

JavaScript programs downloaded into a client computer could have the same ac-

cess to the system as a local software program. Access of this type would clearly be

unacceptable. To safeguard the client from unauthorized access, a number of safe-

guards are built into the browser to prevent JavaScript running in the browser from

gaining access to local machines. This mechanism is collectively referred to as the

sandbox, a restricted area in which JavaScript can execute. Client side JavaScript

runs in its own sandbox, and does not have access to anything outside the sandbox

by design. The language provides no read or write access to local files beyond the

highly regulated cookie file. To prevent browser-specific privacy invasions, it is not

possible for a script in one window to monitor the users activity in another window,

including the URL of the other window, if the page did not come from the same

server as the first window. Scripts cannot extend their reach outside of the sandbox

to access local file systems and many sensitive system preferences. The script runs

only while its containing page is still loaded in the browser. When the page goes

away, so does any JavaScript that is part of that page, without being saved to the

local disk cache. Sandboxing can prevent scripts from accessing private information

outside the browser, but they provide no means for protecting information within the

13

browser.

Same origin policy

The same origin policy [Rud01] prevents documents or scripts loaded from one origin

from getting or setting properties of a document from a different origin. Two pages

have the same origin if the protocol, port (if given), and host are the same for both

pages.

An origin is not the complete URL of a document. Consider the two popular

URLs for Mozillas web sites:

http://www.mozilla.org http://developer.mozilla.org

The protocol for both sites is http:. Both sites also share the same domain name:

mozilla.org. But the browser sees them as sites running on two different servers: www

and developer.

Documents from the same server at mozilla.org using the same protocol, have the

same origin. A script in a document from one of the two servers would display an

access disallowed or permission denied error message if it tried to get the location

property of the other document.

Similarly, if a bank’s secure pages that use the https: protocol try to access the

location object properties of http: pages hosted by the same bank, access is disallowed,

even though both these set of pages share the same server and domain name.

The same origin policy applies to external scripts as well. For example, if my-

website.com includes a script from google.com, the script will execute in the context

of mywebsite.com. Thus, the script will have unrestricted access to the page its in-

cluded from and will be able to issue requests against mywebsite.com, but it will be

unable to manipulate google.com documents in other windows and frames. These

external scripts are really quite common, and the example google.com relationship is

how Google Analytics is used on many sites. The risk associated with external scripts

is that they implicitly grant unrestricted page access to a script from a remote site.

Hence, compromising the script at google.com would allow attacks against users of

mywebsite.com.

Today pages load a lot of code from external sources (ads, videos, counters, music,

14

etc.) Thus, by including an ad, the ad server has access to anything on the origin’s

domain.

2.2 JavaScript based attacks

Many security holes have been found with the JavaScript language and its execution

environment. Such vulnerabilities range from relatively harmless oversights to serious

vulnerabilities that permit access to local files, cookies, or network capabilities.

Also, many JavaScript attacks are possible without violating any security poli-

cies, simply by using the language in an undesirable manner. As a simple example,

JavaScript is often used to open a customized new window on the client. This feature

has been heavily exploited to generate unwanted annoying pop-ups. More seriously,

this feature has been exploited in recent times to launch phishing attacks, where key

information about the origin of the web page is hidden from users. JavaScript can

also be used to cause a denial of service attack on the host either intentionally or by

mistake by having an unstoppable infinite loop.

The most prevalent JavaScript based attacks are Cross-site scripting and Cross-

site Request Forgery. The principle behind both these attacks is that the hacker

gains the ability to insert some arbitrary content into a web page. This content can

be used to do things that the trusted site did not intend, like stealing the user’s

cookies. The difference between CSRF and XSS is the way in which the attack is

delivered. XSS relies on the injection of arbitrary data through non-validated input,

such as fields from a POST form submission. On the other hand, CSRF depends

on browser features to retrieve and execute the attack bundle. These attacks are

discussed in detail in the next section.

2.3 Cross-site attacks

2.3.1 Cross-site scripting attacks

Cross-site scripting attack method was first discussed in a CERT advisory back in

2000 [CER00]. But, even today cross-site scripting (XSS) is one of the most common

vulnerabilities in web applications. It happens as a result of insufficient filtration of

15

data received from a malicious person and then sent to third parties. Systems that

receive data from users and display it on other users’ browsers are very vulnerable to

an XSS attack. Wikis, forums, chats, web mail - are all good examples of applications

most susceptible to XSS.

Cross-site scripting (XSS) can be defined as a security exploit in which an attacker

inserts malicious code into a page returned by a web server trusted by a user. This

code may reside on the web server or be explicitly inserted when the user browses to

a site, it may contain JavaScript or just HTML, and it may use third party sites as

sources or rely only upon the resources of the targeted server. XSS attacks typically

involve JavaScript code from a malicious web server executing on a user’s web browser.

1081

0 200 400 600 800 1000 1200

1200000

1000000

800000

600000

400000

200000

0

Minutes since Worm deployment

In
fe

ct
io

ns

10 481222 8803

919514

1008261

Figure 2.2: Propagation of Samy by exploiting an XSS flaw

The self propagating worm ’Samy’ [Som02] is proof of how easy and feasible

it has become to exploit XSS vulnerabilities. In October 2005, the highly popular

social-networking site MySpace was hit with this cross-site scripting worm that spread

16

exponentially. The author of the worm created Ajax code on his MySpace site that

ran automatically when anyone looked at his profile. Because Ajax can interact with

pages users never see, his code pressed all the relevant buttons to add Samy to the

victim’s friends, and added the words ”but most of all, Samy is my hero” to their

page. The code also pasted itself into the victim’s profile, so that any MySpace user

viewing the victim’s page would have their page infected. Samy spread extremely

fast, as seen in Figure 2.2. Within 24 hours the author of the worm, Samy, had a

million MySpace users ’wanting’ to be his friend and to whom he a hero. MySpace

was forced to shut down to fix this vulnerability, and though the payload of this worm

was not harmful, it very well proved how powerful and fast cross site scripting attacks

can be.

2.3.2 Dangers of XSS vulnerabilities

The XSS vulnerability can be exploited to do any or all of the following:

• Stealing a user’s cookie

• Modifying a web page

• Collecting statistics

• Exploit a browser vulnerability

• Capturing Clipboard Contents

• Stealing History and Search Queries

• Port Scanning and other advanced attacks

Site redirection, access of local files, performing tasks with system privileges etc are

some of the other dangers of XSS. In the sections below, a detailed explanation of

each of the above is given with an example.

Stealing a user’s cookie Cookies are pieces of information generated by a Web

server and stored in the user’s computer by the server so as to remember the user

and her preferences. Many a time cookies contain confidential information including

17

passwords and banking information. Cookies are also widely used to store session IDs.

To obtain the rights of the owner of the ID, the attacker would insert the ID into

his or her cookie. In other words, if authentication in a system is based on cookie

parameters, an authenticated userss cookies will give the attacker complete access

rights. Cookies are a simple way to make the experience of browsing through a site

more usable and enjoyable.

Modifying a web page In the ideal secure world, only the domain that created the

cookie can access it. JavaScript’s same origin policy prevents a data and information

loaded from one site of origin from altering the properties of a document loaded from

another site of origin. Two web pages are considered to have the same origin if they

have the same domain name, port, and protocol. However, in a XSS attack, the

attacker’s script can access data in the context of the document that is attacked.

Many examples of the use of XSS to steal cookies can be found in the literature.

We explain a simple real exploit [Rud01] documented in April 2006 here: The very

popular eBay web site contained a cross-site scripting vulnerability. When an eBay

user posts an auction, eBay allowed SCRIPT tags to be included in the auction

description. This created a cross-site scripting vulnerability in the eBay website.

Attackers used this vulnerability to redirect auction viewers to phishing sites and to

modify the eBay auction page to steal credentials leading to disclosure of passwords,

credit card numbers, or other personal information. The following is one course of

action for stealing cookies by exploiting eBay’s XSS vulnerability:

1. Attacker includes a redirect script in the auction page.

<SCRIPT>

new Image().src = "http://myevilsite/?data="+ encodeURI(document.cookie);

</SCRIPT>

2. Code gets inserted by server on the victim’s browser which executes the same.

3. Code steals victim’s session cookie, and the attacker is now logged in to the

user’s eBay account.

18

Although simply disabling cookies seems like the easiest solution to prevent cookies

from being stored or stolen, many websites rely on cookies to function correctly.

Modifying a web page A website which allows users to enter content which is displayed

back is susceptible to defacing XSS attacks. An XSS hole in the input page can be

exploited by simply embedding the script to deface.

<SCRIPT src="(your script location)"></SCRIPT>

- OR -

<SCRIPT>

document.body.innerHTML="<h1>Changing the page style</h1>other code here";

</SCRIPT>

By changing the html behind a web page, it can be used as a phishing web site.

An XSS vulnerability at the Web site of JPMorganChase.com was found in June 2006

[Kre].

Since the name in the browser address bar does show that the visitor is on Chase’s

site, it becomes difficult to detect. The content on this page could have been anything

the attacker wanted: login form, bank account number, or a link that that redirects

the user to any other Web site.

Collecting Statistics A good example to explain how cross-site scripting could

allow an attacker to collect statistics is that of a cross-site image embed. The attacker

can insert the URL for his image in the target sites code, such that when the image

is requested from that server, it will execute malicious code, saving some statistical

data before sending the image. JavaScript offers programmers methods for accessing

many browser parameters, such as history, referrer etc. This is valuable information

to an attacker. Also, the time of visit and IP address of the visitor can prove useful

to an attacker.

In addition to frivolous mischief, this kind of attack could be used for serious

criminal purposes. A professionally crafted defacement, delivered to the right re-

cipients in a convincing manner, could be picked up by the news media and have

real-world effects on people’s behavior, stock prices, and so on, to the financial gain

of the attacker

19

Figure 2.3: JPMorgan Chase.com XSS flaw exposed

Exploiting Browser Vulnerabilities An attacker may be able to exploit bugs

in the user’s browser or any installed plug-ins via malicious JavaScript or HTML.

Bugs within plug-ins such as the Java VM have enabled attackers to perform two-

way binary communication with non-HTTP services on the local computer, enabling

the attacker to exploit vulnerabilities that exist within other services identified via

port scanning. Many XSS vulnerable ActiveX controls have been reported. Adobe

Reader and Acrobat versions 7.0.8 and earlier could allow remote attackers to inject

arbitrary JavaScript into a browser session [Ado07]

A generic signature for the attack would be:

http://path/to/pdf/file.pdf#whatever_name_you_want=javascript:your_code_

here

In this case, the attacker does not need to have write access to the specified PDF

document. For the XSS attack to work, the only requirement was that a PDF file be

hosted on the target site. The rest is just a matter of what the attacker wishes to do

20

in her JavaScript code.

Capturing Clipboard Contents JavaScript can be used to capture the contents

of the clipboard. The following proof-of-concept script will display an alert containing

the current contents of the clipboard:

<script>

alert(window.clipboardData.getData(’Text’));

</script>

Monitoring the clipboard periodically while a user works on other tasks might

result in all kinds of information being captured. Many users copy and paste their

passwords as well.

Stealing History and Search Queries JavaScript can be used to perform a brute-

force exercise to discover third-party sites recently visited by the user, and queries

that they have performed on popular search engines. This can be done by dynamically

creating hyperlinks for common web sites, and for common search queries, and using

the getComputedStyle API to test whether the link is colorized as visited or not

visited. A huge list of possible targets can be quickly checked with minimal impact

on the user.

Port Scanning and other advanced attacks JavaScript can be used to perform

a port scan of hosts on the user’s local network, to identify services that may be

exploitable. If a user is behind a corporate or home firewall, an attacker will be able

to reach services that cannot be accessed from the public Internet. If the attacker

scans the client computer’s loopback interface, he may be able to bypass any personal

firewall installed by the user.

Once an attacker is able to identify other hosts after a post scan, a malicious script

can attempt to fingerprint each discovered service and then attack it in various ways.

21

2.3.3 XSS Types

XSS attacks have been classified into two types based on the attack vector: reflected

attacks and stored attacks. [CER00] Reflected XSS attacks are more common than

the stored type.

Reflected Attack Vector A reflected attack, also known as a non-persistent XSS

attack, takes place when malicious code or scripts are output by a vulnerable web

server as part of a valid HTTP request. Some common examples of responses are

error messages for files not found, search engine results, or submitted web forms. An

example of a reflected XSS attack is a case in which an unsuspecting user is enticed to

follow a malicious link to a vulnerable server that injects (reflects) the malicious code

back to the user’s browser. The browser then executes the code or script because the

vulnerable server is usually a known or trusted site. Standard methods of delivery

for XSS exploits are via e-mail, instant messenger applications, or search engines.

Stored Attack Vector A stored attack, also known as a persistent attack, takes

place when the malicious code or script is permanently stored on a vulnerable or

malicious server using a database, blogs entries, newsgroup or web forum posts, or

any other permanent storage method. An example of a stored XSS attack is a case in

which a user requests the stored information from the vulnerable or malicious server,

which then injects the requested malicious script into the user’s browser. The browser

then executes the code or script because the vulnerable server is usually a known or

trusted site. For example, an attacker can post a message containing the malicious

script to the message board, which stores and subsequently displays it to other users,

causing the intended damage.

Our solution is able to detect both reflected and stored attacks as shown in Chapter

5.

2.3.4 Cross Site Request Forgery

XSS exploits the users’s trust in a Web site, while CSRF [Law07] exploits the trust

a Web site has in its users. Many a time the user is unaware of what is happening in

22

the background, and does not realize that the attacker has unauthorized access to his

system and is sending requests to the user’s web page provider by pretending to be

the user. To authenticate and thus gain access to a Web site or corporate intranet,

a hacker uses either the compromised computers IP address or cookies that the site

placed on the machine.

The sequence of steps involved in a basic cross-site request forgery are as follows:

1. The victim is logged in to the target site

2. The attacker posts a link to a malicious site on the targeted site (or link is

provided through some other means)

3. The victim browses to the malicious site

4. The malicious website submits a form that modifies sensitive data with the

action pointing to the target site

5. Form submission is accepted if the victim is still logged in to the target site.

The attack is successful.

The attacker can also modify the user’s credentials when logged in, thus gaining

access to all sensitive content. CSRF attacks are not necessarily limited to submitting

a single fraudulent request. Multiple forms can be automatically submitted sequen-

tially via JavaScript as long as no new identification parameter is required and the

attacker is aware of the sequence of these forms.

One well-known example of an CSRF flaw was found in the eBay application by

Dave Armstrong in 2004 [Pro03]. It was possible to craft a URL that caused the

requesting user to make an arbitrary bid on an auction item. A third-party web

site could cause visitors to request this URL, so that any eBay user who visited the

web site would place a bid. Further, with a little work, it was possible to exploit

the vulnerability in a stored OSRF attack within the eBay application itself. The

application allowed users to place ¡img¿ tags within auction descriptions. To defend

against attacks, the application validated that the target of the tag returned an actual

image file. However, it was possible to place a link to an off-site server that returned a

23

legitimate image at the time the auction item was created, and subsequently replace

this image with an HTTP redirect back to the crafted XSRF URL. Thus, anyone who

viewed the auction item would unwittingly place a bid on it.

2.3.5 Evolution of cross-site attacks

1988 Confused Deputy (Original CSRF Theory)

1991
Early forms of HTML,
HTTP invented

HTML Static Web Pages
take off

Dynamic data is
integrated into web pages

No WWW yet

Netscape adds LiveScript

1995

Web pages become interactive (JavaScript, Cookies)

1996 HTML Injection - CERT advisory on malicious content being uploaded

Web applications appear

2000 Client side Trojans - Web version of Confused Deputy discovered

2001Cross Site Request Forgery

Web 2.0 introduced
2004 Session Riding - First White paper on CSRF

‘AJAX' technology takes off and becomes popular
2005 Samy Worm - Infects 1

million MySpace Users

Browser hacking rampant
Over 70 new XSS attack
techniques

2006
DOM based XSS

AJAX drives Gmail, Google Maps and Google Suggest

XSS tops CVE list
of attacks

XSS used for Phishing

2007
WWW Evolution

History of Cross site attacks

Figure 2.4: History of Cross-site attacks alongside the evolution of the web

Figure 2.4 presents a birds eye view of the evolution of the World Wide Web from a

medium to facilitate sharing information among researchers to its current interactive

and dynamic state. Alongside, it also outlines the history of cross-site vulnerabilities

which is as old as the web itself.

In fact, even before the World Wide Web came into existence, Norm Hardy pub-

lished a document in 1988 explaining an application level request forgery issue called

24

confused deputy [Har88] where a source of authority can be confused into permitting

something that should not happen to happen. Malicious JavaScript today is able

to confuse web applications to do the exact same thing. This correlation and the

roots of Cross-site request forgery attacks are explained in a post to bugtraq in 2000

that explains how ZOPE, an open source web application server was affected by a

confused-deputy web problem that we would define today as a Cross-site Request

Forgery vulnerability.

Static web pages constituted much of the web in the early days of the internet.

These were essentially repositories of information containing static documents, and

web browsers were invented to retrieve and display those documents, as shown in

Figure 2.5. The flow of interesting information was one-way, from server to browser.

Any security threats arising from hosting a web site related largely to vulnerabilities

in web server software, and cross site attacks on the web were unknown.

Figure 2.5: A static 1992 web page, which is an updated version of the first web page
on the internet

LiveScript, an earlier version of JavaScript was added by Netscape in 1995, but did

not become very popular as only Netscape products supported it. Once JavaScript

was introduced, programmers were able to create interactive web pages with spe-

cial effects, and hackers discovered an unexplored world of vulnerabilities. The very

25

first known cross site attacks used HTML frames within the same browser window.

JavaScript was used to read from one frame to the other, thereby enabling stealing of

cookies and other confidential information. To prevent further such attacks, Netscape

introduced the ”‘same-origin policy”’, a policy preventing such leak of information

among different websites. The same origin policy is explained in detail in Section

2.1.3. By the year 2000, many cross site vulnerabilities were discovered, and Mi-

crosoft acknowledged that although this was not an entirely new issue the overall

scope of the issue was larger than previously understood. It was in 2000, that the

term Cross-site scripting (XSS) was coined.

Figure 2.6: The Google Calendar is a good example of a popular web application
used today

Many developers and security experts did not recognize the power and potential of

JavaScript till 2005. In 2005, AJAX took off and a number of web sites started using

AJAX techniques to improve their user experience. Applications such as Google Cal-

endar 2.5 use JavaScript extensively to enhance usability by avoiding page refreshes.

The rise of JavaScript usage led to the rise of cross-site attacks as well. In October

of 2005, a popular social networking website MySpace had to be shut down when a

cross-site scripting vulnerability in the site was exploited. The worm was spreading

26

at a rate of 1,000 users every few seconds before MySpace shut down its site. A few

months later, in 2006, we saw the birth of JavaScript key loggers, port scanners, trojan

horses, intranet hacks etc. Cross site scripting vulnerabilities were being discovered

in many websites. To date, roughly 25561 XSS vulnerabilities have been found and

reported [FP07].

2.4 Current browser security mechanisms and their limitations

This section looks at some of the security mechanisms available in browsers today.

They are anything but complete, and attackers have found many ways to circumvent

the same.

2.4.1 Zone security

Browsers today claim to have the ability to set JavaScript policies for any particular

website. In Internet Explorer, for example, both versions 7 and 6 offer very minimal

fine-grained security against JavaScript based attacks. Zone level security can be

configured in the browser options, as shown in Figure 2.7, and allows for the user

explicitly adding a website to a particular zone; thereby enabling or disabling all

JavaScript on that site.

This approach relies on the user to make all the decisions; and provides no help.

Also, since most sites today require JavaScript to be enabled to work properly, dis-

abling all JavaScript may not even be an option for the user.

2.4.2 XSS Filter

XSS Filter is an IE8 component with visibility into all requests / responses flowing

through the browser. When the filter discovers likely XSS in a cross-site request, it

identifies and neuters the attack if it is replayed in the servers response. Users are not

presented with questions they are unable to answer IE simply blocks the malicious

script from executing.

The XSS filter claims to detect only reflected XSS attacks. Since no user studies

are available as of this writing on the XSS filter, we are unable to determine its

27

Figure 2.7: Current solution to set security policies for websites in Internet Explorer
6 and 7.

efficiency. Also reflected attacks are only one of the types of XSS attacks present

today.

2.4.3 Disabling JavScript

For end users, the most effective way to prevent cross-site scripting attacks is to

disable all scripting languages in their web browsers. The downside of this is the

resulting loss of functionality. Many web sites today heavily utilize JavaScript for

functionality, and may not work properly if JavaScript is disabled. Users can also be

selective about the websites they visit.

Many online banking portals such as the one shown in Figure 2.8 are fully de-

pendent on JavaScript to function as required. Figure 2.8 shows the online banking

portal of TD Canada Trust accessed through a browser with JavaScript disabled. The

page fails to function as required and a blank page is all that displays.

As turning off JavaScript completely breaks the functionality of many modern

28

Figure 2.8: Online banking website with JavaScript enabled.

websites, the usage of browser-tools that allow per-site control of JavaScript like the

NoScript extension [Mao08] may be better.

2.5 XSS attack detection and prevention techniques

Researchers in the past have studied various mechanisms to protect against JavaScript

based attacks. They are implemented either at the client or on the server and can be

used to either detect or prevent cross-site attacks. The following section explains the

different defenses suggested in the past couple of years. We look at techniques that

were suggested first, followed by ones that were suggested at a later date. Recent

approaches are outlined at the end of the section.

29

Figure 2.9: Online banking website with JavaScript disabled. No functionality is
available as well.

2.5.1 Server side defenses against XSS attacks

Writing safe code

Cross-site scripting vulnerabilities can be reduced with proper filtration on user-

supplied data. Some simple techniques include:

• Encoding output

All non-alphanumeric client-supplied data should be converted to HTML char-

acter entities before being redisplayed to a client. For example, the less than

character would be converted to <.

Web page developers are responsible for modifying their pages to eliminate these

types of problems.

30

Technique Papers What Advantages Disadvantages
Writing safe
code

Techniques such as input vali-
dations, output encoding etc.

Programmer has control,
Highly effective if done prop-
erly

Error prone, Tremendous effort
required. Evasion is easy

Application
level firewall

[SS02a] Incoming input data sani-
tized according to rule set

Flexible rules Rules are in a separate lan-
guage. Dependence on system
admin

Server side
proxy (App-
Shield)

[Inc02] Inspects inputs to the appli-
cation and blocks potential
threats

No application specific config-
uration

Cannot detect complex at-
tacks., or zero-day attacks

Instruction-set
Randomization

[KKP03] Creates an execution environ-
ment that is unique to the
running process.

Applicable to a wide range of
code injection attacks

Can be circumvented, Perfor-
mance Penalty, Cannot detect
all XSS attacks

Static Taint
Analysis

[HYH+04] Propagate taint information
through PHP program

Successful for PHP code Requires programmer effort.
Can miss code paths

String Analysis [Min05] Searched the source code for
string patterns

Effective for simple attacks Easily evaded

Taint-
enhanced
policy enforce-
ment

[XBS06] Application based policies
combined with taint checks

Flexible, applicable to other
web attacks

Similar to input filtering. De-
pendant on policies. Can be
easily evaded.

Static code
analysis (Pixy)

[JKK06] Taint based PHP source code
analysis

Web version available, Tested
on more than 50 real world ex-
ploits

Cannot detect complex at-
tacks. False positive rate of
50%

Http only
Cookies (IE 6,
SP1)

[Cor06] New property for Cookies
making them inaccessible us-
ing code

Easy coding for newer applica-
tions

Legitimate uses are also
banned, Only in Internet
Explorer 6.0 +

Approximating
Automatic
Data/Code
Separation

[JB07] Uses string masking to persis-
tently mark legitimate code
in string values

Limited changes to applica-
tion’s source code

Still in preliminary stages

Combination
Static Analysis

[WS08] Adapted String Analysis us-
ing formal methods

Detects many known XSS vul-
nerabilities, No effort by end
user

Manually written input valida-
tion functions, Does not de-
tect DOM-based XSS, Cannot
handle complex dynamic code,
Programmer dependent

Table 2.2: Different Server side XSS defenses suggested over the years

• Adding double quotes around all tag properties

A common XSS attack technique is to exploit query string variables. For ex-

ample, scripts can be added to query string variables by closing the < a > tag,

and appending with the < SCRIPT >. Web developers can defend against

this attack by placing optional double quotes around each tag attribute.

Ex: For the URL

<a href=http://www.mysite.com/detail.asp?

id=<%= request.querystring("id") %>>

The query string ”‘id”’ can be used as an XSS entry point by giving it a value

such as

31

2105><script event=onload>exploitcode</script>

This attack can be prevented just be enclosing the href attribute in double

quotes.

<a href="http://www.mysite.com/detail.asp?

id=<%= Server.HTMLEncode (request.querystring("id")) %>">

Even this tremendous effort is not enough to completely erase the threat of a

cross-site scripting attack, as evasion is possible. For example, if a filter disallows

the < SCRIPT > tag, it can be evaded by using event handlers to directly include

JavaScript code without using a < SCRIPT > tag as shown below.

<BODY onload="alert(’Sample code for XSS’)">

Further, style sheets can also be used to add JavaScript to a page.

<LINK REL="stylesheet" HREF="javascript:alert(’Sample code for XSS’);">

Multiple entry points for JavaScript make it almost impossible for the programmer

to write safe code. Also, recent XSS attacks using PDF documents, Flash objects,

images etc as input points make it even more difficult to write XSS attack proof code.

Application level firewall and proxies

An affordable start to intrusion detection can be made using the Firewall. Recently,

many commercial routers can be configured as an IDS sensor to track and audit the

packet flow through the router. When a packet or a number of packets match a

certain signature, it will respond to that match in the way you have configured it to

respond.

Scott and Sharp developed a very expressive web security policy language that

allows one to specify what are legal HTTP and HTML requests [SS02a]. The goal

is to protect specific web applications. They also developed this into an anomaly

IDS called SPECTRE that infers this policy through observing the behavior of the

32

web application [SS02b]. However, their system requires the correct identification

and validation policies for each individual entry point to a Web application. This

is a difficult security task that requires careful configuration by highly technical and

experienced individuals. Another problem with this approach is the increase in server

response time. Thus, if the number of hits increases, the dynamic generation of web

pages will slow down the server substantially.

The Sanctum AppShield Firewall that later became IBM’s AppScan is a commer-

cial server side proxy solution that apparently does not need security policies [Inc02].

AppShield executes default filter operations on all user provided data in order to

remove potential XSS attacks. Opposed to Scott and Sharps approach, AppShield

requires no application specific configuration which makes it easy to install but less

powerful. [SS02a] report that AppShield is a plug-and-play application that can only

do simple checks and thus can only provide limited protection because of the lack

of any security policies. Recent reviews of AppScan have criticized its usability and

indicate that it is not able to detect all types of Cross-site attacks.

Code modification

Instruction Set Randomization (ISR) has been proposed by Kc et.al as a defense

against code injection attacks in general. It defuses all standard code injection attacks

since the attacker does not know the instruction set of the target machine. The key

to the success of ISR is the randomization key. Thus a motivated attacker may be

able to circumvent ISR by determining this key. Also, ISR is not transparent to

developers and requires the transformation of application code. Although proposed

in general for code injection attacks, previous work on ISR defenses do not seem to

handle JavaScript injection, and are ineffective against XSS attacks.

String analysis methods generate a formal language representation (e.g., a context

free grammar) of the possible string values a program may generate at a certain

program point. Minamide [Min05] describes an application of string analysis to

statically detect cross-site scripting vulnerabilities and to validate pages generated

by web applications written in the PHP language. He first extracts a grammar from

a PHP program considering assignments as production rules, the grammar is then

33

transformed into a context-free grammar, and, finally, this is used to validate the

desired properties. He claims to support almost all string operations available in PHP,

including regular expression-based replacement. He suggests using this analysis to

check for XSS vul nerabilities, but his proposed technique checks the whole document

for the presence of the < script > tag. This is a rudimentary approach because web

applications often include their own scripts, and because many other ways of invoking

the JavaScript interpreter exist.

Jovanovic [JKK06] recently presented another server side technique to detect XSS

attacks. Pixy is a Java program that performs automatic scans of PHP 4 source code,

aimed at the detection of XSS and SQL injection vulnerabilities. Pixy takes a PHP

program as input, and creates a report that lists possible vulnerable points in the

program, together with additional information for understanding the vulnerability.

He has also implemented a web version of the tool which is available to the public.

Although efficient in detecting XSS vulnerabilities in the applications tested by the

authors, Pixy needs one file as input, where all file inclusions have been resolved

and included source code has been embedded. Also, the observed false positive rate

reported is at around 50 percent, which puts a lot of emphasis on manual analysis

of every detected vulnerability. This is not only time consuming, but also not very

helpful to a novice programmer who needs to decide if the detected vulnerability is a

real one.

Introduced by Microsoft in Internet Explorer SP1, the Http only attribute marks

a cookie inaccessible through script. Although this prevents the attacker’s script

from accessing cookies, it also prevents legitimate code from doing so. Also, the

cookies are still visible using XMLHTTPRequest, and thus can be accessed by using

AJAX approaches. The benefits of using this approach is that httpOnly cookies are

not visible using simple JavaScript methods such as document.cookie and that makes

XSS a bit more difficult when using it in context of credential theft. The disadvantage

is that it doesnt work in all browsers and in some old browsers, like IE5.5 on Mac

and WebTV, it can actually cause the page to fail to load.

SMask [JB07], developed by Johns and Beyerlein is a novel technique proposed

34

against script injection attacks. The authors observe that scripting attacks are possi-

ble due to data being run as code. Thus, by using string masking to mark legitimate

code in string values, SMask is able to identify code that was injected during the

processing of an http request. SMask works transparently to the application and is

implementable either by integration in the application server or by source-to-source

translation using code instrumentation.The approach proposed by the authors to de-

termine if a string contains code is rather coarse. They acknowledge the high false

positive rate. Also, since their current XSS tests are limited to three applications,

one cannot comment on their detection capabilities either.

Taint based approaches

Huang et al. describe WebSSARI, a white-box tool that uses static code analysis and

run- time inspection to locate and partially fix input-based web security vulnerabili-

ties. Their work was among the first such static analysis based work. Their type-based

tool considers any data derived from tainted input to be fully tainted. WebSSARI

inserts calls to sanitization routines that filter potentially dangerous content from

tainted values before they are passed to security-critical functions.

The main advantage of static analysis (as compared to runtime techniques) is that

all potential vulnerabilities can be found statically, while its drawback is a relative

lack of accuracy. In particular, these techniques typically detect dependencies rather

than vulnerabilities.

WebSSARI is reported to have a false positive rate between 26-30 percent. It

performs signature-based filtering to sanitize untrustworthy data, hence the effective-

ness of the tool is only as good as the input filters and can be evaded. Authors of

WebSSARI note that even if all possible attack patterns can be enumerated, real-time

filtering would be impractical and have a huge performance impact.

WebSSARI incorporates a compile-time verification algorithm that statically ap-

proximates runtime state. Web applications are mostly written in scripting languages

such as PHP, ASP, Perl, JavaScript etc. Scripting languages are not compiled into

executables but executed directly by interpreters. Predicting the runtime is complex

in such applications as the they interact with the underlying interpreter at runtime.

35

The approximation mechanism used in WebSSARI may not be adequate and accurate

in current AJAX applications.

Xu, Bhatkar and Sekar [XBS06] have proposed augmenting traditional security

policies with information about the origin of each byte of data used in security-

sensitive operations. With this information, their security policies can distinguish

between accesses made by an application on its own accord, and accesses made on

behalf of untrusted users; thereby detecting a range of attacks including cross-site

scripting. They report only the analysis of SquirrelMail for XSS vulnerabilities, and

give only a single example in their paper for XSS vulnerability detection. As with

any policy based approach where policies are not learnt but specified, their system is

only as good as the policies.

Combination static analysis

Su and Wasserman [WS08] combine the work on tainted information flow with string

analysis to detect both SQL injection and XSS attacks. They introduced a tool to

detect only SQL injection vulnerabilities in their paper. Their analysis checks web

applications against the policy that no untrusted data should invoke the JavaScript

interpreter. This is represented as a black-list rather than a white-list. Thus, main-

taining an accurate black list is key to the success of their method. Omissions in

black-list policies will imply loss of detection efficiency.

2.5.2 Client side defenses against XSS attacks

Client side proxy

[IEKY04] Ismail et al. introduced a web-proxy based IDS whose goal was to mitigate

XSS vulnerabilities [IEKY04]. It is implemented as a client-side proxy that compares

requests and responses and disables them if malicious characters are detected. It

was fairly primitive, however, and relied mostly on heuristics and had no learning

component. Also, it was able to protect only against reflected cross-site scripting

attacks. It does not prevent cross-site request forgery attacks or other complex cross-

site attacks.

36

Technique Papers What Advantages Disadvantages
Anomaly de-
tection of web
based attacks

[KV03] Log file with HTTP requests
analyzed

Based on a learning model,
hence requires no changes to
the application

Reliance on web access logs,
not tested across all XSS at-
tack types

Client side
proxy

[IEKY04] Monitors HTTP requests and
responses of the user

Attack information is shared
via a central repository

Difficult to adopt, user inter-
ference required, transmission
interception possible

Monitoring
JavaScript
code execution

[HV05] Intrusion detection system
built around a FSA

Permits fine-grained policies
on JavaScript execution

Many implementation details
are unclear. Method to gener-
ate policies not explained.

In browser web
proxy (Noxes)

[KKVJ06] Proxy with manual and auto-
matically generated rules

Flexible configuration of rules Protects mainly against cookie
theft, High false positives, may
fail with AJAX apps.

Code-rewriting
(Browser-
Shield,CoreScript)

[RDW+07]
[YCIS07]

Rewrite scripts according to
a security policy prior to ex-
ecuting them in the browser.

Fairly complex policies Can be easily evaded. Perfor-
mance penalty, Common poli-
cies for all sites.

Dynamic Data
Tainting

[VNJ+07] Tracks the use of sensitive in-
formation in the JavaScript
engine

Effective for simple attacks High false positive rate for sites
with multiple sources, Heavy
user interaction

Browser-
Enforced Em-
bedded Policies
(BEEP)

[JSH07] Checks allowable JS func-
tions as specified in the web
page’s header

Good attack detection Modifications required to every
web page, subject to mimicry
attacks

Mutation-
event trans-
forms, or
METs

[UELX07] Client side flexible policies Based on execution monitoring Still in preliminary stages - no
implementation yet

Session Safe [JB07] Combination of different so-
lutions for various session
stealing XSS classes

Works based on removing an
attack requirement, not input
sanitation

Attacks against the IDS possi-
ble

Table 2.4: Client side XSS defenses

Noxes, also implemented as a proxy hosted on the client, prevents connections to

websites that are not allowed by some usage heuristics as well as the security policy

specified by the firewall rules [KKVJ06]. These rules are generated in three ways:

manual creation, by prompting, and through training. The training feature most

reflects the operation of our system, and Noxes, when used with this feature, can be

considered an anomaly intrusion detection system.

Our system is different from Noxes and other similar systems because they act at

the phenomenological level of the script text rather than at the level of the JavaScript

interpreter. Our system observes attacks directly at the level of their execution.

Code-rewriting (BrowserShield,CoreScript)

BrowserShield [RDW+07], CoreScript [YCIS07] and other similar tools use au-

tomatic JavaScript rewriting to enforce security policies and monitor the runtime

behavior of JavaScript applications. In BrowserShield, trusted JavaScript functions

37

are inserted to mediate access to the document tree by untrusted scripts. CoreScript

policies are specified as a kind of edit automata. Both these tools BrowserShield and

CoreScript also require policy specifications, and hence face the same challenges as

other policy based approaches where the policies are not inferred. Also, since they

parse HTML and JavaScript in the page, the performance impact is significant. Also,

while the authors suggest specifying site-independent policies, it is unclear how this

can be achieved, as something valid for one site may not be for another.

Dynamic Data Tainting

Vogt [VNJ+07] proposes detection of malicious flow of sensitive information to a

remote attacker using mostly dynamic, language-based taint propagation. This ap-

proach addresses only one class of XSS attack; it does not mitigate the damage of other

XSS-based attacks, such as port-scanning (where the sensitive information does not

appear in the form of data),web page defacement and browser resource consumption.

Also, his current implementation does not track data flow using transfer methods like

the XMLHttpRequest object, which is extensively used in AJAX applications. Unlike

taint propagation, our approach is based

Intrusion detection of based attacks

Kruegel and Vigna’s work [KV03] using web server log files to learn the normal

behavior of a web page is among the first applications of anomaly detection to defend

against web based attacks. The analysis techniques used by the tool take advantage of

the particular structure of HTTP queries that contain parameters. The parameters of

the queries are compared with established profiles that are specific to the program or

active document being referenced. Although only two cross-site scripting attacks were

tested, and not much can be said about the XSS vulnerability detection efficiency of

their approach, this is a pioneering work in applying anomaly detection to the web.

Although out work is very different in terms of the learning methodology, it is also

an anomaly based policy inference engine.

In [HV05], Hallaraker and Vigna propose an auditing system for Mozilla’s JavaScript

interpreter. The authors present in their work the implementation of this approach

38

and evaluate the overhead introduced to the browsers interpreter. The overhead ap-

pears to be on the higher side which make this approach unscalable when analyzing

non-trivial JavaScript based routines.

Their system however is most similar to ours in terms of its implementation. It’s an

IDS built around a JavaScript auditing system. However, the IDS is built on detecting

specific attacks conforming to custom-coded FSA. They do not report false positive

rates or their effectiveness at non-synthetic attacks. All IDSs can be considered

systems for notifying administrators of security policy violations. However, the form

the security policy takes differs greatly depending on the type of the IDS. Signature-

based IDSs are very lenient. The security policy is a specification of what is not

allowed. Specification-based systems encode the security policy in the specification,

but require administrators to manually specify that policy. Learning systems like

anomaly IDSs infer what is allowed through observation and build a security policy

from that.

Anomaly intrusion detection is usually not considered policy inference because the

normal profile is not a perfect reflection of security policy. In the system call example,

the normal profile does not contain all sequences that are seen during normal runs,

creating false positives. Also, because it usually focuses on only one or a few features

of execution, attacks that do not alter those features can succeed. However, these

flaws are often found in manually specified policies as well. There are well-defined

policies for JavaScript in web-browsers, but they are not specific to particular web-

applications or web-documents. Also, XSS attacks do not violate these policies in

any way. Adding web-application and web-document specific policies is a potential

solution to XSS attacks.

Jim et al. recently demonstrated a client-based solution for embedding custom

security policies in web pages through minor browser modifications and a special

JavaScript object, analogous to Java’s SecurityManager class [JSH07]. It allows very

expressive security policies, but they demonstrate two: white-listing of specific nodes

in the DOM and black-listing of DOM nodes through the use of non-execute tags.

This is different from our work in that it works at the DOM level, not the interpreter

level, and they do not attempt to infer policies. However, it is similar in that is allows

39

web-document specific policies.

Deployment poses a practical limitation for BEEP, because both the client and

the server must use it in order for it to work.

Other recent approaches

Mutation-Event Transforms, or METs, [UELX07] are proposed as a simple, flexible

client-side mechanism for security policy enforcement. With METs, the Web server

specifies programmatic security policies by including code for JavaScript callback

functions in the first script executed in returned Web pages. The Web client enforces

these policies by invoking the callbacks on each page modification, or mutation event,

including initial page loading.This is quite similar to BEEP [JSH07], and requires

both client and application modifications. The proposal is still in its infancy, hence

there is no data available on attack detection capabilities. However, the effort required

to deploy this approach does appear to be very high.

SessionSafe [JB07] is a very different approach to XSS attack handling and concen-

trates on three types of XSS attacks. It provides a combination of counter measures

for Session hijacking. Thus, not all XSS types are handled, for example, a malicious

attacker can still be able to modify the pages appearance or redirect form actions.

At present, SessionSafe is still in its early stages and no data is available on false

positives or detection capabilities; nor is there any specific plan in place to integrate

it into established frameworks and application servers.

Recently, Same Origin Mutual Approval (SOMA), a new policy for controlling

information flows that prevents common web vulnerabilities was proposed by Oda

et.Al. By requiring site operators to specify approved external domains for sending

or receiving information, and by requiring those external domains to also approve

interactions, page content from malicious servers is identified and prevented from

being executed. Approaches such as SOMA complement our solution and can form a

layered defense as explained in the Threat Model section 3.2 in Chapter 3.

40

2.6 Relevance of Intrusion Detection to cross-site attack detection

To help better understand the motivation for our solution, this section provides an

insight into intrusion detection techniques and their application to the web. Our

work has been inspired by some of the previous work in the field of anomaly detec-

tion. Although anomaly detection techniques have been implemented for OS level

intrusion detection and malicious URL / packet detection, JaSPIn is the first known

implementation of a complete anomaly detection based policy inference engine for

cross-site attacks.

2.6.1 Overview of Intrusion Detection Systems

An intrusion is defined as a sequence of related actions performed by a malicious

adversary that results in the compromise of a target system [KVV04]. In the context

of XSS attacks though, the target can be either the web server, or the end user.

An intrusion detection system (IDS) is a method of detecting attacks by monitoring

network or system events. To find the most suitable intrusion detection system for

detecting web based attacks, we need to understand the classes and types of IDSs.

While building different types of intrusion detection systems, researchers have used

one of three approaches [Axe00] : signature detection, specification, or anomaly detec-

tion. Some hybrid solutions have been proposed, where the strengths of one method

is exploited to cover the weaknesses of another. Also, based on the data source, IDSs

can be classified into two groups: network based and host based. The following sec-

tions will give a brief overview of these IDSs, with emphasis on web-based attacks.

This will facilitate a better understanding of our decisions to build a browser based

policy inference engine to detect web attacks.

2.6.2 Types of intrusion detection systems based on data source

Host and network based IDS differ in their input and location. A host-based intrusion

detection system is typically designed to inspect input on a particular machine, while a

network-based IDS monitors network activity, and therefore, its takes network traffic

as its input. Implementing an efficient network based IDS for the web is difficult

41

due to overwhelming traffic. Also, the IDS can be dodged by obfuscation, partial or

complete encryption, fragmenting the source or overloading, such that not all input

is validated, all of which are common on the web. Also NIDS were typically designed

to work at the TCP/IP level, and are not as effective at the HTTP level.

Host- based IDSs for web applications can be located either on the server or the

client. Client-side techniques in the area of web security are primarily used by the

consumers of web applications, rather than by the providers. It is interesting to note

here that client-side tools are preferable for security-aware users who wish to achieve

a higher level of protection across a wide range of visited web sites. Not every web

server is efficient at reacting to security threats immediately. For these cases, an

active protection on the client side is able to fill at least a part of the resulting gap.

However, the downside to a client-based approach is that the user needs to install

additional programs and patches to achieve the desired level of protection.

2.6.3 Types of intrusion detection systems based on detection approach

Signature based systems (also termed misuse-based systems) scan system input for

known attack signatures. What this means is that, the attack has been previously

studied, and a specific characteristic of the attack has been identified either manually

or automatically. This is known as the signature of the attack. The IDS stores

a collection of such signatures, and raises an alarm when it finds input data that

matches the signature. Most signature based systems make use of some form of

pattern matching. Classical virus scanners are signature based. The speed of a

signature based system is dependent on the number and complexity of its signatures.

Also, a signature-based IDS is only as good as its database of stored signatures:

the larger the database, the better its attack detection capability. However, the more

advanced the database, the higher the processing time. One way to reduce processing

time is to split the feed, but this increases complexity and cost.

Specification based systems compare the behavior of the program to be protected

to a set of pre-defined policies. These policies are typically generated by a team of

experts who study the program and decide on the allowed actions hat program can

take. Sometimes, policies can also describe what is not allowed, instead of what is

42

allowed. Once again, the speed of a system is dependent on the complexity and depth

of its policies. Also, the IDS is only as good as the policies that it checks against. This

means that the level of expertise required to generate good specifications is quite high,

and any slight change in the program would require a review of the specifications.

This costs time and money.

Anomaly based (also called behavior based) intrusion detection systems are based

on profiling normal program behavior and do not rely on definitions for what is

malicious. The core principle on which such systems work is that a program under

attack behaves differently from normal. Typically, the IDS is subject through a

training period during which it learns what is normal for the given program. This

unfortunately means that if the training data includes attack behavior, these attacks

will be considered part of normal, and never get detected. Anomaly-based IDSs are

only as good as their training data, learning algorithm and chosen representation of

normal. Anomaly-based systems have the big advantage of detecting zero day attacks.

2.6.4 Anomaly detection approaches

Host-based anomaly intrusion detection was popularized by Forrest et al. [FHSL96].

In that work, normal program behaviour is defined as the observed sequences of

system calls seen during training. When the system is in use, only those system call

sequences found in the normal profile are allowed to be invoked. The normal profile

can be thought of as a security policy specifying which system call sequences, or more

implicitly, the control-flow paths of program execution.

Similar systems have been used with features such as instruction branches [BAP+03],

CORBA messages [SMS99], and Java methods [IF02]. Some of the recent efforts de-

scribed in the previous section have looked at anomaly intrusion detection in the

context of web applications. Kruegel and Vigna’s work looked at statistical anomaly

detection of parameters contained in HTTP requests and relied heavily on web ac-

cess logs [KV03]. Robertson et al. later built on that work to categorize alerts and

remove false positives [RVKK06]. This method is very similar to their previous work

on system call parameters [KMVV03]. The majority of web application IDSs focus

on protecting specific web applications on servers. However, there is some work on

43

the client level. Ismail et al.’s web-proxy based IDS [IEKY04] had no learning com-

ponenet, but was based on intrusion detection principles. Noxes [KKVJ06] can be

considered an anomaly based approach when its training feature is enabled. However,

unlike other systems in the past, JaSPIn has a learning component that automatically

infers stable JavaScript policies.

Anomaly intrusion detection is usually not considered policy inference because the

normal profile is not a perfect reflection of security policy. In the system call example,

the normal profile does not contain all sequences that are seen during normal runs,

creating false positives. Also, because it usually focuses on only one or a few features

of execution, attacks that do not alter those features can succeed. However, these

flaws are often found in manually specified policies as well. There are well-defined

policies for JavaScript in web-browsers, but they are not specific to particular web-

applications or web-documents. Also, XSS attacks do not violate these policies in

any way. Adding web-application and web-document specific policies is a potential

solution to XSS attacks.

Our policy inference engine is an anomaly-based intrusion detection system with

a learning component. As seen previously, anomaly based systems are highly effective

in detecting attacks or deviations from normal. Thus, they are ideally suited for the

web due to the variant nature of attacks, and it’s ever evolving nature.

2.7 Summary

JavaScript based attacks are tricky to detect due to their varied input points, mas-

querading techniques and increased sophistication. The main difference between web

pages developed today and those developed a couple of years back, is the amount of

JavaScript used to animate the pages and the scope of the modifications that these

scripts apply to the web pages after they have been downloaded from the server to

the user’s browser. AJAX is used extensively in Web 2.0 applications. The central

underlying technology of AJAX is a JavaScript API called XmlHttpRequest[W3C07]

(XHR) which is available across many browsers. XHR provides a flexible mechanism

for sending HTTP requests; and almost any arbitrary request can be sent in the

background.

44

Different techniques such as input filtering, output filtering, taint analysis, web

proxies, static code analysis, runtime analysis, anomaly detection and have been

applied to detect and/or prevent cross-site attacks.

False positives, false negatives, attack coverage, ease of implementation and ease

of use are important considerations when selecting a defense strategy. Comparison of

different approaches based on published information is difficult because they contain

varying levels of detail.

Input filtering techniques can generate false positives when input signatures are

too restrictive. On the other hand, they can miss a range of attacks if the signatures

are too loose. Output filtering and encoding are not only difficult to implement, they

are also prone to usability issues. Also incorrect specification of the trusted input

source or input string or insufficient signatures can generate false positives. Tainted

analysis based detection techniques use either whitelists or blacklists. Both of these

approaches are prone to false positives when the list is inaccurate or incomplete. Also,

taint based techniques are unable to detect JavaScript attacks where there is no flow

of data.

Source code analysis techniques are incomplete due to limitations in implementa-

tions that do not guarantee 100 percent coverage. The sheer volume of results and

false positives (as high as 50 percent) can be time consuming for the web developer

to address. User-specified policy based systems suffer from usability issues. Also,

incorrect policy descriptions could lead to either a high false positive or a high false

negative rate. Anomaly detection based approaches have proven to be effective in

detecting a wide range of attacks. The false negative rate is typically low, while the

false positive rate is dependent on the accuracy of the training data. False positive

rates are high when the training data is not enough to comprehensively represent

normal behavior.

Table 2.5 gives an overview of the additional effort required to implement different

defense strategies. Solutions that require modifications to existing applications and

additional effort in writing accurate policies have slimmer chances of being widely

accepted.

45

Additional efforts Approaches
Policy/Rules specification [SS02a], [Inc02], [Min05], [XBS06], [JKK06], [IEKY04]
Application programming [HYH+04], [Cor06], [JB07], [WS08], [JSH07]
Client-side configuration [KV03], [IEKY04], [JSH07], [UELX07], [JB07]
Data training [KV03]
User environment (modified browser) [VNJ+07]
Language extension [RDW+07], [YCIS07]
Maintaining black/white lists [Min05], [XBS06], [JKK06], [KV03], [VNJ+07], [JSH07]
Server-side configuration [SS02a], [Inc02], [KKP03], [Min05]

Table 2.5: Additional effort to deploy different XSS defenses

JaSPIn is a client-based solution that requires no change to existing web appli-

cations. Also, we have been able to establish that the automatic policies created by

JaSPIn are accurate enough to detect attacks while keeping the false positive rate

low. More discussion on the same is available in Chapter 5.

We are not aware of any other implementation of inferred JavaScript policies. A

related idea has been implemented by Jim et. Al [JSH07], where the website needs

to specify which scripts are approved for execution and the browser filters the rest.

In comparison to JaSPIn, BEEP lacks the learning component. Also, BEEP not only

requires browser modifications, but also modification to every single web page. This

is a tremendous amount of effort, and impractical. Also, they make no mention of

their false positive rates, while JaSPIn is able to keep its false positive rate low, as

explained in Section 5.4

Another similar idea has been discussed in the Mozilla forums: Markham proposes

communicating some policies on scripts from web site to browser in an HTTP header.

In comparison to our work, his selection of policies is fixed, e.g., ’only scripts in the

header are allowed to execute’, and do not seem to include policies that could, allow

some event handlers in a page to execute, while preventing others.

Hallaraker and Vigna [HV05] propose an auditing mechanism for JavaScript some-

what related to our work, and provide three examples of attacks that can be detected.

Their auditing code records method calls, and their arguments. The paper seems to

suggest that their initial implementation had a lot of overhead, and was restricted to

extremely simple types of XSS only.

Chapter 3

Modeling JavaScript Methods

Different techniques such as input filtering, output filtering, taint analysis, web prox-

ies, static code analysis, runtime analysis and intrusion detection have been applied

to detect and/or prevent cross-site attacks. These approaches have only had partial

success as discussed in Chapter 2. JavaScript based attacks are tricky to detect due to

their varied input points, masquerading techniques and increase sophistication. We

propose anomaly detection based on monitoring JavaScript code execution to solve

this problem. Anomaly based systems have the advantage of being able to detect

previously unknown attacks without requiring had generated policies. This chapter

explains the method used by JaSPIn to profile web pages. The following sections

elaborate on how anomaly detection can be used to detect JavaScript based attacks.

3.1 Overview

Anomaly-detection algorithms work by constructing models of normal behavior and

subsequently checking observed behavior against these models for any significant vari-

ations that may hint at malicious behavior. The success of an anomaly detection al-

gorithm depends on the choice of an accurate behavior model. Anomaly based IDSs

have been proposed in the past to monitor the system calls made by a process, in

an effort to detect deviation from a known profile of system calls for the program.

Such IDSs have been used in many scenarios, such as host-based intrusion detection

systems (e.g., [FHSL96],[Pro03],[Wag99],[WD01]) and sandboxing and confinement

systems (e.g., [PFH03]) In system-call-based anomaly detection, the intrusion detec-

tion system maintains state per process monitored and upon receiving a system call

from that process (and possibly deriving other information), updates this state or

detects an anomaly.

There are several questions that have to be answered when designing an anomaly

46

47

based intrusion detection system: where to integrate the intrusion detection system,

what should be monitored, and how should the information be represented. We pro-

pose a host-based anomaly detection system using anomalies recorded in the browser

to detect cross-site attacks. Behavior modeled by our anomaly detection system needs

to be automatic, complete and accurate. For this, we propose creating a ”‘profile”’

of every web page visited by the user. A ”‘profile”’ of a web page is a model of the

normal behavior of a web page. Any deviations from such established profiles are

interpreted as attacks.

The goal of our anomaly detection system is to detect JavaScript based web at-

tacks. A JavaScript based attack executes previously unseen JavaScript code on a web

page. Creating profiles that define normal JavaScript code execution can be used to

detect code that was not previously executed. As seen in Chapter 2, JavaScript is an

object-based language. Client side JavaScript uses many pre-defined and user-defined

objects. The JavaScript execution environment in the browser registers a large num-

ber of function callbacks on initialization. These hooks are used when scripts try

to access a specific property or method that are not native in the engine. To ensure

completeness of our anomaly detection system, all these calls must be intercepted and

logged. The profile of a web page visited by the user is created by logging all method

calls and property getters and setters in the JavaScript interpreter. To improve the

accuracy of our intrusion detection system, we also record the order in which these

method invocations occur.

3.2 Threat Model

There are a wide range of security problems prevalent on the web today. No single

computer or network security implementation is effective against every type of attack.

By using a few different security products together, it is possible to eliminate the vast

majority of attacks. This concept of having multiple defenses working together to

protect a system or user is termed ’layered defense’. In such a defense, each solution

lives up to a threat model. A threat model describes the assumptions and factors

considered while making a solution. It also describes the problems that are addressed

by the solution. This section elaborates on the type of attacks JaSPIn is built to

48

detect and the underlying assumptions and general requirements of JaSPIn.

The goal of JaSPIn is to detect malicious JavaScript that is not normally part

of a web page trusted by the user. Being an anomaly detection based approach, the

central premise of JaSPIn is that intrusive activity is a subset of anomalous activity.

In the ideal case, the set of anomalous activities will be the same as the set of intrusive

activities. However, as explained in the previous chapter, this is not always true. Our

goal, is thus to reduce the number of reported non-intrusive activities while being able

to detect all intrusive activities.

Although we assume that an attack will generate an anomalous sequence by calling

a different set of functions in a different sequence of calls, it is possible for the attacker

to mimic normal behavior by calling functions in the same sequence as the most

common paths for all users. This type of attack against anomaly detection systems

is termed a mimicry attack. Mimicry attacks against JaSPIn are discussed in details

in Chapter 6.

We assume that the attacker does not have control over the user’s computer and

does not have the ability to spoof JaSPIn or to create or control JaSPIn generated

policy files. The attacker is also assumed to have no internal control over the trusted

site. JaSPIn does assume that the attacker controls arbitrary web servers and some

of the content on legitimate servers (but not the source code directly).

It has to be clarified that although JavaScript can also be used to exploit vulner-

abilities in the browser itself, this thesis does not look at that class of attacks. These

attacks are independent of the website and not cross site. The only case, in which

XSS could be related to browser vulnerabilities, is when exploitation of these browser

vulnerabilities requires powers available only to a particular target site.

Thus, this thesis does not discuss situations where an attacker compromises a web

browser to circumvent profile checks or modifies the profile of a web page. Further,

we do not address the problem of users visiting already compromised malicious web

sites that do not have a stable profile. Instead we focus on the problem of protecting

a protecting the user against cross-site attacks on sites that the user frequently visits

such as her bank’s web site, email web client or news web sites.

49

3.3 Description

Our system observes JavaScript code as and when it is interpreted in the browser.

Although any JavaScript downloaded by a web page may have the potential to do

harm, it has to be actually running to realise that potential.

3.3.1 Choice of Algorithm

A method for classifying JavaScript behavior based on method call invocations could

record and measure method invocations in many ways. It could compare the timings

of different calls, or their relative frequencies. It could analyze arguments to specific

JavaScript functions, or could only look at a subset of all possible method invocations.

We have chosen to create the profile of a web page by recording all the JavaScript

method calls, including property setters and getters made by the web page. Record-

ing only the name of the method call provides completeness, but not accuracy. A

malicious method executed by the attacker’s code could have the same name as that

found in the normal profile of a web page. To improve the accuracy of our model and

increase the effort required by an attacker to mimic normal method call behavior, we

record the relative order in which these method invocations happen. We decided to

use this simple approach in our current implementation.

A modeling algorithm implemented in the browser needs to be able to capture

a large number of method invocations in a short time. Also, this information on

method invocation needs to be stored in a compact way that converges to a fixed

state profiling the web page. Once a stable profile has been created, the algorithm

needs to be able to detect anomalous events efficiently.

Previous work by Hofmeyr [HFS98] and Somayaji [Som02] have used two tech-

niques, both of which use a fixed-length window to partition a process’s system calls

into sequences. Window size is defined as the length of the subsequence of a call

trace. It is used as the basic unit for modeling program or process behavior. The

most straight forward technique used in anomaly detection systems is called the se-

quence method. In this method the profile of a program’s behavior consists of the

entire set of sequences produced by that program. With the other technique, known

as the lookahead pair method, the pairs formed by the current and a past system

50

call are stored in the program’s profile. Look ahead pairs are less suitable in our

case due to the much large alphabet size in generating profiles for web pages. The

sequence method has worked surprisingly well in comparison to other, more sophis-

ticated algorithms. Experiments in the past have showed that the sequence method

was almost as accurate as the best algorithm in any given test, while being much less

computationally expensive [WFP99].

3.3.2 Profile Generation

In our current work, we record the sequence of method calls in the JavaScript inter-

preter that precede the current call. Depending on the window size (n), the profile

contains the series of calls (n-1) that precede it. The entire set of sequences of all

method invocations called during the user browsing a web page form the profile for

that given page. This includes constructors, property getters, setters and garbage

collection methods that can be traced in the JavaScript interpreter.

The algorithm used to build the normal profile is simple. We track all method

invocations including property getters and setters generated by a particular web page,

and build up a profile of all unique sequences of a given length that occurred during

the trace. Each web page of interest has a different profile, which is specific to the

functionality of the JavaScript embedded in the page, version and configuration of

the browser, local administrative policies, and usage patterns. Once a stable profile

is constructed for a given web page, the profile can be used to monitor the ongoing

behavior of the JavaScript code invoked by that web page.

The construction of the normal profile is best illustrated with an example. Suppose

we observe the following trace of method invocations:

document, getElementsByClass, className, length , document, getEle-

mentsByClass, length

Note that in the example above, the documet object is also included as a part of

the trace. This is because of a call to the new() method to create a new document

object to work with.

We slide a window of size w across the trace, recording each unique sequence of

length that is encountered. For example, if w=3 we get the unique sequences:

51

document, getElementsByClass, className

getElementsByClass, className, length

className, length , document

length , document, getElementsByClass

document, getElementsByClass, length

For efficiency, each unique method call is stored in a map file and the corresponding

index is logged.

Somayaji presents a more formal description of this algorithm [Som02]. We have

modified the same to suit web profile generation.

Given,

C = the alphabet of all possible JavaScript method invocations made by a

particular page

c = |C|

T = t1; t2, . . . , tn | ti ∈ C (The trace of calls)

τ = the length of T

w = the window size where 1 ≤ w ≤ n

P = the set of patterns associated with T and w (profile)

n = number of web pages in the website

Pwebpage = {< si, si+1, . . . , sj >: si, si+ 1, . . . , sj ∈ C
1 ≤ i, j ≤ τ,

j − i+ 1 = w,

si = ti,

si + 1 = ti + 1,

. . .

sj = tj}

The profile for a given web page is the set of all sequences of length w of JavaScript

method invocations invoked during the training session from the trace of calls T.

52

3.3.3 Profiling a complete web site

To generate the profile for a given website, we look for similarity in profiles between

two web pages in the same domain, and group them together. We compare the profile

of a newly visited web page with other web pages in that domain at the same level,

and if no profile has been generated at the same level, it is compared to a profile for

a page one level above, if it exists.

A profile to be a set of sequences and thus, we use set theory to explain how

profiles are merged.

Suppose we need to find the if the profile for \tauhttp://www.mydomain.com/

sublevel1/page1.html can be merged.

1. Check if a profile exists for http://www.mydomain.com/sublevel1/somepage.

html

If yes, check if merge is possible.

If merge, the union of these two pages is renamed to create a profile for

http://www.mydomain.com/sublevel1/. Quit.

If merge is not possible, Quit. Keep profile separate.

2. Check if a profile exists for http://www.mydomain.com/sublevel1/

If yes, check if merge is possible.

If merge, add new sequences to profile

http://www.mydomain.com/sublevel1/. Quit.

If merge is not possible, Quit. Keep profile separate.

3. Check if a profile exists for http://www.mydomain.com/

If yes, check if merge is possible.

If merge, add new sequences to profile

http://www.mydomain.com/ Quit.

If merge is not possible, Quit. Keep profile separate.

Profile similarity is computed for two profiles from different web pages of the same

web site, for example tech.yahoo.com and music.yahoo.com.

We measure profile similarity by looking at the number of sequences that appear

in the intersection of the two profiles.

53

Figure 3.1: Finding proximity similarity between two web pages in the same domain

In Figure 3.1,

p1 = Sequences in the first web page p2 = Sequences in the second web page p12

= Sequences that appear in both web pages

For a configurable proximity threshold t,

Case 1, Case 2: p12 ≥ t : Merge profiles

Case 3, Case 4: p12 < t : Do not merge profiles

Thus, if two web pages with similar profiles need to be grouped,

Pwebpage12 = si, si+1, ..., sj U s′
i, s

′
i+1, ..., s

′
j

where
s = sequence in Pwebpage1

s′ = sequence in Pwebpage2

54

3.3.4 Detecting Anomalous Behavior

Once we have a profile of normal behavior, we use the same method that we used to

generate the profile to check for new traces of behavior. We look at all overlapping

sequences for the selected window size in the new trace and determine if they are

represented in the profile of a web page. Sequences that do not occur in the normal

profile are considered to be mismatches. To detect an intrusion, at least one of the

sequences of JavaScript method calls generated by the intrusion must be classified as

anomalous. When a new call is added, up to w anomalous sequences are produced,

one for each possible position of the new call.

The most common form of cross-site attacks involves accessing the document.cookie

method in the attacker’s script. While accessing the cookie of a web page, the

JavaScript program first accesses the document object which is a property of the

window object. The cookie object is a property of the document object. Calls to

these property getters are traced by our intrusion detection system as method calls

in the interpreter. More advanced cross-site attacks such as DNS pinning and port

scanning also cause anomalous behavior and are explained in detail in Chapter 5.

3.4 Analysis

JaSPIn is a client side tool that uses the sequence method to infer JavaScript profiles.

JaSPIn’s profiles are inferred from behavior. The fundamental principle of such a

system is that most attacks will cause a deviation from normal behavior. Normal

behavior is automatically profiled by JaSPIn. Learning based algorithms reduce the

user’s workload. User devised policies could be incomplete, and any system that relies

on the user is only as good as the user who sets it up. Another parallel approach

could be for the programmer to set up these policies as he is the one with complete

knowledge about the function calls. However, this method is not only error-prone

due to reliability on the programmer, but is also more prone to mimicry attacks.

As with any empirically derived model of normal behavior, such automatic policy

generation comes with the risk of imperfect detection, that is, false positives and false

negatives. False positives can be caused by erratic changes in the user’s browsing

55

patterns, or updates to the JavaScript functions used on a web page. A false negative

is a situation where an intrusion is really happening, but the IDS does not catch it.

In our case, for an attack to actually happen, it does require the attacker’s script to

execute. This can be caught as a violation of normal behavior. However, mimicry

attacks against JaSPIn are possible and this is discussed in Chapter 6.

The present version of JaSPIn does not implement any response mechanisms.

Although detection is done real time, and anomalies identified before an attackers’

code can actually execute, currently we have not implemented any way to mitigate

these attacks. This research aims only to detect JavaScript based attacks against web

applications. Automatic mitigation of these attacks is important, and discussed in

Chapter 6.

3.5 Summary

This chapter described our profile generation methodology, which is based on an

anomaly intrusion-detection system for web applications to detect JavaScript based

attacks. The scope of this research is limited to JavaScript based cross site attacks,

and does not aim to detect any browser vulnerabilities. Also, JaSPIn’s policies do

not protect against all web application attacks. While XSS acts as the means for

many other attacks including, SQL injection and remote code injection, these attacks

are also possible by exploiting other server or application vulnerabilities. JaSPIn is

only one layer in protecting against web based attacks. Additional, defense-in-depth

methods to add extra layers of protection are needed.

Chapter 4

Implementation

JaSPIn works by profiling the list of JavaScript function calls made by a given website

to create profiles for that particular site. Our solution works at the client, and thus

requires the browser to be able to provide us with information on the script being

executed. This chapter elaborates on the changes we did to the Mozilla Firefox

browser. Our example implementation enables seeing JaSPIn in action and allows us

to investigate the efficiency of this method. The first part of this chapter explains

the architecture of the browser. We then explain how JaSPIn has been implemented

by modifying Spidermonkey and integrating our anomaly detection system in it. We

also give some details on the implementation and working of a browser extension

that can be used to talk to the internal policy engine. The last part of this chapter

explains how JaSPIn works with some examples. We have extended the Mozilla

Firefox 2.0pre web browser [W3C04] from the Mozilla Foundation. The modified

browser was successfully built with help of the build documentation on a Fedora Core

v4 Linux system.

4.1 Understanding Mozilla Firefox

Firefox is built on top of Mozilla’s application platform and reusable components.

Figure 4.1 [Fou08] gives an overall view of the browser. The JavaScript Interpreter,

SpiderMonkey is of particular interest to us. Mozilla is a large and modular software

written in C, C++, and JavaScript. The use of several technologies allows Mozilla

projects can be developed independently. The main mechanism that supports the

integration of the different components is the Cross-Platform Component Object

Model (XPCOM) which is similar to Microsoft’s Component Object Model (COM).

Other technologies used are XPConnect and the Cross-Platform Interface Definition

Language (XPIDL). The following sections explain each of these in detail

56

57

Figure 4.1: Architecture of Mozilla

4.1.1 SpiderMonkey

SpiderMonkey [Cor08] is the code-name for the implementation of the JavaScript en-

gine embedded in Mozilla. It is a stand-alone JavaScript engine that parses, compiles,

and executes JavaScript code. The engine conforms with the ECMAScript standard

[Int99], which defines built-in data types. In addition ECMAScript defines a col-

lection of built-in objects which include the Global object, the Object object, the

Function object, the Number object, the Math object, the Date object, the RegExp

object and some Error objects. Any applicationthat embeds SpiderMonkey can define

58

its own application-specific objects in addition to the built-in objects. In a browser

like Firefox, the application-specific objects are responsible for providing access to

the Document Object Model (DOM) [W3C04] from within the JavaScript engine.

The DOM contains an object-instance hierarchy that models the browser window

and some browser window information. It also contains an object-instance hierarchy

of elements of an HTML document, which is created when the document is loaded

into the browser. For example, some of the objects made accessible by the DOM

are the window object, the document object, the navigator object, and the location

object. The window object is the global object from which all other objects inherit.

The HTML elements of the current document are represented bu the document ob-

ject. Each object has a number of properties which can either be a built-in type,

an object, or a method. An example of this is the href property accessed using the

expression document.referer.href. A JavaScript program first accesses the document

object which is a property of the window object. The referer object is a property of

the document object, and href is a property of the referer object.

SpiderMonkey exposes a public API that applications can use to compile and

execute scripts, instantiate host objects, and define properties. The engine does not

provide any security per se, and all mechanisms to provide access control and safety

must be implemented in the embedding application, e.g., the web browser.

JavaScript and C++ interact with each other in the Mozilla source code. C++ is

a compiled language, while JavaScript is an interpreted language. When the browser

is started, the C/C++ components start first. But in an early stage, XPConnect

is initialized and enables the use of interpreted JavaScript at runtime. A Mozilla

browser distribution consists of both compiled C++ and uncompiled JavaScript files.

As explained in Chapter 2, JavaScript code from a web page is executed in its sand

box, and does not have any access to Mozilla’s internal objects. It can however

access objects that are exposed by the DOM. JavaScript is mostly used in those

areas of the source code that care for user interface events. This also means that the

SpiderMonkey interpreter executes both scripts on behalf of a downloaded web page

and scripts that are part of the ”native” code of the Mozilla browser. Thus, when

mnitoring JavaScript method invocations, we need to be able to differentiate between

59

the two.

4.1.2 XPCOM

XPCOM provides a platform and language independent modular framework that en-

ables a software project to be broken up into smaller modularized pieces that are

integrated at runtime, and separates the implementation of an object from its inter-

face. The basic idea is that related functionality is gathered in one entity, called a

component or a module. The component implements one or more interfaces through

which other components can access its functionality. An interface consists of one or

more methods and variables. Each component has a unique classID and contractID

that describe the component. In addition, each interface the component implements

has a unique InterfaceID which must be specified before accessing the component.

The component manager keeps track of all the components in the system, and is re-

sponsible for finding the correct component when a contractID or classID is specified.

4.1.3 XPConnect

XPConnect is the layer between XPCOM AND javaSCript and is responsible for

them to work together. It provides a transparent interface to XPCOM objects and

allows JavaScript objects to interact with XPCOM objects. JavaSCript objects can

also implement XPCOM compliant interfaces. XConnect bridges the gap between

the two. Such an approach was adopted to keep the various components seperate and

provide a transparent mechanism for object interaction between SpiderMonkey and

XPCOM.

4.2 System Architecture

The first step in designing JaSPIn was to determine where our profiling mechanism

would be built and what it would do. Also, profiles need to be represented in a

precise and compact way. The anomaly detection engine needed to be either in

XPConnect, which is used for forwarding most calls directed to the DOM or directly

in SpiderMonkey. Since not all calls go through XPConnect, and in our case it

60

is necessary that we log every single method invocation, JaSPIn is integrated in

SpiderMonkey itself. SpiderMonkey however does not have explicit knowledge of

whether the script being executed is part of the web page or the JavaScript engine.

This distinction is possible in XPConnect. In a JaSPIn enabled browser, modifications

to the DOMClassInfo class have been made to pass this information to SpiderMonkey

from XPConnect.

One key challenge in doing this is to be able to differentiate between ”native”

scripts that execute on behalf of the browser, and scripts that are downloaded as part

of HTML pages. Since ”native” JavaScript code executes with all privileges set, these

scripts can perform any operation that is allowed to the browser program itself and

should not be audited. Another important choice was to decide how much information

is required to be logged. It was unclear in the beginning if only the sequence of method

invocations would suffice, or the arguments to those calls mattered. From our initial

experiments, we were able to determine that for our anomaly detection system; a

stable normal profile for a given website is possible just based on the sequence of

method calls. However, in order to reduce the number of false positives, we track

which top level event such as an onclick or onmouseover gets triggered before a set of

sequences.

Each web site has three files associated with it. The first time a website is visited

a new map file containing all the method calls made by it is created. The map file

has only function names recorded in it. Each function begins in a new line, and

the corresponding line number is used for tracking their order in the log file. The

log file records the order of method invocations. The profile of a given website is

created by generating sequences of these calls with a window size specified by the

user. Profiles are saved for every web site in a .prof file. The log file is deleted once

the corresponding profile has been generated.

An important decision that we had to make was to determine if we would profile

every web page or every web site. This is a tricky question - since profiling every web

page would decrease our false positive rate, also decreasing JaSPIn’s ability to detect

attacks. For example, if we were to profile every web page separately then, http://

www.cnn.com/2008/POLITICS/03/17/florida.primary.decision/index.html and

61

http://www.cnn.com/2008/US/weather/03/17/atlanta.tornado/index.html would

each have their own profile. This means that every time the user visits cnn.com, new

profiles will be created for every news item thereby making it almost impossible to

detect attacks. When we look at the profiles of both the URLs above they are the

same. Also, logically, we can see that they are indeed the same page. On the other

hand, if we were to profile the entire website as a single entity, there will be a high

rate of false positives, as the profile of cnn.com/weather is different from the news

pages. Our approach is thus to group profiles of similar web pages from a domain

automatically, thus creating separate profiles for the weather section, and a single

profile for the news pages. Similarly, we needed to decide of it would be significant

to consider query strings at all. From our observations, we found that the inclusion

of query strings to separate profiles did not provide any added benefit. Hence, the

current version of JaSPIn ignores query strings in both profile creation, and policy

verification. We only observe pages that use JavaScript. The lookup of function

names in the profile is currently implemented as a linear search through the file. The

profile file format is simply a list of sequences with the specified window size. A sum-

mary of the algorithm is presented in pseudo code 1 . This code has two parts - the

first set of functions is executed during profile generation, and the second set during

attack detection. Profile generation is enabled if the user opts for this in JaSPIn’s user

interface, and if the stability threshold has not yet been reached. Given a stability

threshold of ”‘N”’, a profile is considered stable if no new sequences are generated for

”‘N”’ continuous visits to the same web page. The default stability threshold selected

is three. This is explained in detail in 5.2.1.

62

Input: Map file,Profile, Current Method Call Name

Output: Alert if anomaly detected

if jaspin status == ON then

foreach Method Call m do

if enable profile then

if isnew(profile,m) then
add function(Map,Profile,m);

end

get sequence(m);

if NOT profile test(Profile,get sequence(m)) then
profile add(Profile,get sequence(m));

end

end

else

if isnew(profile,m) then
signal(Anomaly);

end

get sequence(m);

if NOT profile test(Profile,get sequence(m)) then
signal(Anomaly);

sequence print(get sequence(m));

end

end

end

end

Algorithm 1: The JaSPIn algorithm applied on every method invocation

4.3 Implementation

The following sections will give some details on our code modifications to SpiderMon-

key, building of the extension to manage JaSPIn and the interaction between the two.

For our example implementation, Mozilla Firefox browser 1.5.0.6 was modified. The

source code for Firefox can be downloaded from

63

ftp://ftp.mozilla.org/pub/mozilla.org/firefox/releases/

It was built on Linux version 2.6.11 (gcc version 4.0.0). Since JaSPIn requires changes

to SpiderMonkey, a fresh installer for Firefox with these modifications was created for

both Linux and Windows platforms. The extension comes installed on our version of

Firefox, but can be updated or deleted like any other Firefox extension. When in-

stalled on an unmodified version of Firefox, the extension simple does not do anything.

The Mozilla build system, like the rest of the Mozilla codebase, is cross-platform. It

uses traditional unix-style autoconf and make tools to build the various applications.

A .mozconfig file, which sources from the Firefox default mozconfig file is placed in

the source directory (mozilla/.mozconfig). The following command is then used to

build Firefox. make -f client.mk build

4.3.1 Changes to SpiderMonkey

The source for SpiderMonkey is found in the js/src/ folder under the main source di-

rectory of Mozilla. Both the LiveConnect and XPConnect interfaces are also present

under this directory. All the classes are implemented in C and C++. The core

classes that we modified are all written in C. JS modules declare and implement the

JavaScript compiler, interpreter, decompiler, GC and atom manager, and standard

classes. The compiler consists of a recursive-descent parser and a random-logic rather

than table-driven lexical scanner. Semantic and lexical feedback are used to disam-

biguate hard cases such as missing semicolons, assignable expressions (”lvalues” in

C parlance), etc. The parser generates bytecode as it parses, using fixup lists for

downward branches and code buffering and rewriting for exceptional cases such as

for loops. It attempts no error recovery. The interpreter executes the bytecode of

top-level scripts, and calls itself indirectly to interpret function bodies (which are also

scripts). All state associated with an interpreter instance is passed through formal

parameters to the interpreter entry point; most implicit state is collected in a type

named JSContext. Therefore, all API and almost all other functions in JSRef take

a JSContext pointer as their first argument. JaSPIn initiates itself whenever a new

context is created. This is achieved by modifying the js NewContext function in js-

context.c. By doing so, parallel logging is enabled when multiple tabs are opened, or

64

Figure 4.2: Struct definition for storing each profile

multiple browsers are used. Our logging mechanism is implemented in jslog.c, which

is called from the other source files.

Modifications were done to the functions that interpret script method invocations.

The previous function call, context and web site are remembered till a change occurs.

Files modified include js.c, jsfun.c, jsparse.c and jsapi.c, all in the js/src directory.

The primary aim of finding each and every function call is to be able to sequence

them to create a set of sequences that can be either used as part of the profile during

training or for comparison during detection. JaSPIn integrates sequence generation,

and sequence comparison classes into the src directory of SpiderMonkey. Figure 4.2

shows the information stored in the sequence profile structure.

Each profile contains the list of functions as a pointer to the map list and the

window size, which can be varied in the JaSPIn extension. Profiles are saved in

memory till the user moves away from a particular web page. It was challenging to

determine the URL of a web page from within SpiderMonkey, and we needed to have

interface classes via XPConnect to the outside to determine this information.

4.3.2 Browser Extension

An intrusion detection system will only be used if it is user-friendly, and gives the

user a sense of control. Since all the code changes for JaSPIn are done deep inside

SpiderMonkey, we needed to have an interface to allow the user to interact with the

same. JaSPIn’s user interface is built as a standard extension for Firefox. Firefox

extensions allow the application to be customized to fit the personal needs of each user

if they need additional features, while keeping the applications small to download.

65

Thus, extensions can be made publicly available for download. If the JaSPIn extension

is installed on a system that does not have the SpiderMonkey modifications, it simply

alerts the user and does nothing. The JaSPIn extension cannot be initialized without

the modified SpiderMonkey core. As with all Firefox extensions, our user interface

is written in XUL and JavaScript. XUL is an XML grammar that provides user

interface widgets like buttons, menus, toolbars, trees etc. User actions are bound to

functionality using JavaScript. The extension can be used either from the Tools menu

or by clicking on the icon on the top right. The extension also provides the status of

the system at the bottom right corner of the browser.

The extension acts as both a user input and a tool output mechanism. The user

is able to enable or disable policy generation or detection. Also, the tolerance levels

for false positives can be specified. Window sizes for each sequence in the profile can

also be modified. There is also a white list which specifies which websites the user

does not want to profile.

It also adds functionality to display the ongoing status of JaSPIn in the status bar,

as shown in Figure 4.3. It indicates whether JaSPIn is currently generating profiles

or verifying a web page state against its profiles. If anomalies are found, the number

of anomalies detected is mentioned in the status bar with a blinking warning icon.

When the user clicks on this, further details of the anomalies detected are revealed.

If the user classifies the detected anomaly as a false positive, she is given the option

to update the profiles.

A snippet of a MAP and Profile file generated by JaSPIn is shown in the Ap-

pendix.

66

Figure 4.3: JaSPIn extension

Figure 4.4: Configuring JaSPIn using the extension.

67

Figure 4.5: Alert while using JaSPIn

Chapter 5

Results

Efficient attack detection is an important performance measure of intrusion detection

systems. However, detection rates alone are not an adequate measure of the efficacy

of an intrusion detection system because alarms will be ignored if the system produces

too many false alarms. Our experiments with JaSPIn measure the probability of false

alarms using JaSPIn, its effectiveness in detecting various kinds of cross-site attacks,

resource usage and its impact on web page load times.

In this chapter, we present results from our experiments using JaSPIn. We first

describe the influence of window size and the stability threshold on the functioning

of our anomaly detection system. We then present results from our experiments

using JaSPIn to determine profile stability, false positives, profile diversity, overhead,

and performance. We also describe the experiments on evaluating the effectiveness of

JaSPIn against some common XSS attacks, including advanced cross-site attacks that

can evade several other detection models. Table 5.2 outlines the various experiments

conducted using JaSPIn. Each of these tests is explained in detail in the following

Type Test category No.of
tests

Aim Findings

A Profile stabilization tests 60 To determine if JavaScript
method sequences are repeti-
tive across visits

Stable policies can be gener-
ated in about 5-15 visits

B False Positive Rate 60 Determine number of false pos-
itives

As low as 0, decreases with in-
creasing visits

C Internet web surfing simula-
tion

25 Profile diversity yahoo.com showed varying
profiles for varying runs

D Overhead 2 Determine space and time re-
quirements

Small profile files, low impact
on we page load times

E Simulated Exploits 59 Attack detection Common XSS attacks detected
F Targeted attacks 3 Attack detection Successful detection

Table 5.2: Summary of tests conducted using JaSPIn to determine its accuracy,
performance, overhead and efficiency. Tests (A) to (C) focus on determining the
accuracy of our model of normal behavior; (D) analyzes space and time requirements;
(E) and (F) test JaSPIn’s attack detection efficiency.

68

69

sections of this chapter.

5.1 Data Source

Our experiments were conducted by installing JaSPIn on a Linux 2.6.11 Fedora Core 4

computer. Sixty different websites (see Appendix) were profiled and revisited during

the course of three months. These websites were not handpicked, and have been

profiled during day to day browsing. Although not exhaustive, this list provides a

good sample of websites different from each other with respect to their purpose, usage

of JavaScript, programming language etc.

Synthetic normal profiles can be created by doing a static or runtime analysis of

the code to find method invocation sequences. However, not all sequences in such a

profile will be generated in practice, since one cannot determine whether a behavior is

frequent, rare or unseen for a particular user, and so one cannot get a true sense of the

false positive rate in practice. Our approach is to examine the behavior of JaSPIn by

gathering data from real websites. This strategy has some disadvantages. First, the

experiments cannot be exactly replicated, because the conditions of the tests cannot

be exactly duplicated. Data gathered from live web sites may also be contaminated

with actual security violations, potentially making it difficult to distinguish between

true positives (genuine attacks) and false positives (other anomalous behavior). Also,

such experiments are dependent on the web sites visited. These disadvantages are

outweighed, however, by the prospect of discovering how well JaSPIn works in practice

on real websites.

5.2 Choice of Parameters

The windows size (refer Section [3.3.1]) and stability threshold (refer Section [??])

used by JaSPIn can be configured by the user through the browser extension. The

default value for the window size is 6 and the stability threshold is 3. To better

understand the rationale for these values, the following parts discuss how the values

of these parameters affect the behavior of JaSPIn.

70

Website Type No.of Websites Methods Avg. Methods Num. of visits across window sizes
2 4 6 9 15 20

Moderate JavaScript 17 <100 59 4 6.1 5.8 9 9 9
JavaScript Intensive 31 >100 87 6 12 15.2 17 19 21

AJAX intensive 12 >100 110 9.1 11 13.7 16.7 22.4 24

Table 5.3: Effect of varying window sizes on the number of visits to achieve profile
stability with a threshold of three

5.2.1 Window Size

JaSPIn attempts to predict whether a sequence under observation is more likely to

have been generated by a page’s normal script or malicious code. This is done by

observing how consistent the sequence is with the sequences in the profile of the web

page. As seen in Chapter 3, the length of the sequence is called the window size.

JaSPIn uses a fixed window size to build the profile of a web page during training,

and compare it against generated sequences seen during testing. The size of the

window is configurable as seen in Chapter 4, and is picked a priori.

There is a trade off between using shorter or longer sequences (window sizes).

Longer sequences produce more anomalies because any deviation from previously-

seen patterns will create new sequences in proportion to the length of the window. If

we use longer sequences, we have a lot fewer instances of each subsequence in our data.

However, longer sequences provide better attack detection and are more difficult to

mimic by malicious code.

In the past, researchers have used window sizes of six [HFS98] and nine [Som02]

for system call anomaly detection. JaSPIn was configured to use these values. Ad-

ditionally, we also tested smaller window sizes of 2 and 4 and larger window sizes

of 15 and 20. Table 5.3 shows the effect of varying window sizes on the number of

visits required to create a stable profile of different websites with default thresholds

(explained in the next section). We have classified the sites visited during this ex-

periment into three categories based on their usage of JavaScript indicated by the

number of methods in the map file. As explained in Chapter 4, the map file contains

the list of all method invocations made by the web page. We determine the average

number of visits required to a web site to define its profile for varying window sizes.

Shorter sequences of two and four require the least number of visits. However, these

are too small for attack detection, since many JavaScript property setters and getters

71

Web site type URL Visits for a stable profile

Static Content http://www.ottawahomerepairs.com -
Dynamic Content http://www.imdb.com 4
Dynamic Content http://en.wikipedia.com 12
JavaScript Intensive http://www.rogers.com 14
JavaScript Intensive http://www.cbc.ca 21
JavaScript Intensive http://www.cnn.com 22
AJAX Intensive http://mail.yahoo.com 11
AJAX Intensive http://maps.google.com 19
Flash http://www.fitc.ca -

Table 5.4: The number of visits for some sample websites for a stable profile to be
generated

require four calls (Ex: window.document.forms[0].SquareFeet.value). This sequence

can not only be a part of the normal profile of a web page, but also the attacker’s

script, thus permitting mimicry attack. Longer sequences of fifteen and twenty re-

quire larger number of visits and more storage. In our experiments with JaSPIn, we

use a window size of six, since it requires the least number of visits to create a stable

profile for a web page and is greater than four.

5.2.2 Stability Threshold

The stability threshold (refer Section [??]) of JaSPIn is a configurable option available

to the user. It is used to dictate the number of consecutive visits to a web page that

produce no new sequences to be added to the web page’s profile during the training

phase. Once the stability threshold has been reached, JaSPIn switches from training

to detection phase for that particular profile. The stability threshold is a parameter

dependent on the user’s browsing patterns and tolerance to false alarms, and can

be better chosen after more rigorous testing. Higher thresholds translate to more

training data due to increased visits to the website during training. More training

reduces the number of false positives. In our experiments, we have opted to use a low

stability threshold of three.

5.3 Profile stabilization

JaSPIn detects intrusions by noticing anomalous sequences of JavaScript method

invocations. Hence, it only detects attacks against web applications for which it has

a normal profile. This section examines how well JaSPIn can acquire them in practice.

72

A profile is considered stable if training on the current web page is complete,

and attack detection is enabled. In other words, the stability threshold has been

reached. Table 5.4 shows the number of visits required to generate a stable profile

with a window size of 6 an stability threshold of 3. For tabulation purposes, if the

profiles for different pages on a web site are different (as explained in Section 4.2), we

provide the total number of unique sequences as the number of sequence for the over

all web site. No restrictions were imposed on the browsing patterns in an attempt to

keep it real. Consecutive visits to these websites are not necessarily immediate and

these results were collected over a period of six months. Although not exhaustive, the

websites shown in this table are a good cross-section of the various websites a user

may visit, including mail, maps and wiki pages. Also, these websites are interesting

based on their varied usage of JavaScript. Sites that do not use any JavaScript, such

as http://www.ottawahomerepairs.com and http://www.fitc.ca are not profiled.

We also observe from the table that JaSPIn takes longer to build a stable profile for

websites which use more JavaScript. It is interesting to note, though, that the use

of AJAX by itself does not increase the number of sequences in the profile of a web

page.

Of particular interest is the profile of a website such as http://www.cnn.com

which is a combination of profiles of related sub-domains and web pages for different

stories in http://www.cnn.com/2007/ . It can be seen that such a website requires

more visits before a stable profile is created. On the other hand, mail.yahoo.com

is an AJAX driven website whose profile is created by recording visits to a sin-

gle URL http://ca.mg1.mail.yahoo.com/dc/launch?.rand=5s28fnbhjmmdh.This

website takes only 11 visits before profile stability is achieved.

To understand profile stability over time, Figure 5.1 graphs the number of se-

quences in the profile of three different websites, Wikipedia (http://en.wikipedia.

com), Yahoo Mail (http://mail.yahoo.com) and Rogers (http://www.rogers.com)

over a period of 50 visits. The number of sequences in each of their profiles is plotted

on the Y-axis against the visit number on the X-axis. Yahoo mail generates the least

number of profiles (106) in spite of being an AJAX driven website. After the first

couple of visits, the profiles stabilize at around 197 sequences for Yahoo Mail, 256

73

Figure 5.1: This graph shows the number of sequences observed per web site over a
period of 50 visits. There are varying number of sequences in each web site’s profile.
The first visit generates a brand new policy, and the next few visits stabilize that
policy.

sequences for Wikipedia and 713 for Rogers. Rogers takes the longest to stabilize

and has the largest number of JavaScript sequences. It also has the largest variation

in sequences from the initial visit to the 50th visit. The number of sequences in the

profile for Yahoo Mail sees an increase at the 24th visit. This is due to the user creat-

ing a new folder, and moving messages to it. The previously unseen action generates

new profiles and alters the normal for this user’s interaction with Yahoo mail. False

positives by changes in browsing patterns are discussed in detail in the next chapter.

5.4 False Positives

The traditional method for reporting IDS results is a receiver operating characteristic

(ROC) curve that shows the trade off between identifying real attacks (true positives)

74

Type of website Methods in map file # of websites Avg. False Positive Rate
Moderate JavaScript Use <100 17 0.20
JavaScript Intensive >100 31 0.214
AJAX >100 12 0.091

Table 5.5: Average false positive rate across visits for websites with different levels
of JavaScript usage. The false positiove rate is calculated by dividing the number of
visits that generated a false alarm by the total number of visits to a web site after
the profile is considered stable.

and incorrectly flagging non-attack requests as an attack (false positives) [HAN96].

However, in the case of JaSPIn, profiles are built for live websites hosted on the

internet. During our evaluation period of over three months, none of the websites

being profiled by JaSPIn were subject to a real attack. Plotting an ROC for dummy

websites will not be useful as it may not reflect the true behavior of JavaScript used

on real websites. Hence, we record the number of visits that generate a false positive,

and use that as a measure to understand JaSPIn’s accuracy at detecting attacks.

The number of false positives per visit were recorded from each of the sixty web

sites that were profiled by JaSPIn. JaSPIn raises an alert during attack detection

phase when it comes across a sequence (of length 6) not part of a web site’s normal

profile. False positives can be caused for two reasons: if the website updates its

JavaScript method, or if the user triggers the call of a JavaScript method that was

never called previously. In our evaluation, we consider all alerts from JaSPIn as false

positives, even though the user is able to distinguish that as a false alarm and ask

JaSPIn to ignore it.

Table 5.5 shows the average false positive rate across sites classified based on their

JavaScript usage. We define the average false positive rate as the number of visits

that generated a false positive alert as compared to the total number of visits. This

usage is determined by the number of method names in the map file of a web site.

17 websites that use JavaScript moderately, 31 that make extensive use of JavaScript

and 12 sites using AJAX were profiled and checked for sequence variations leading to

a cross-site attack. The average false positive rate of 0.091 across sites using AJAX

for a window size of 6, with its stability threshold set at 3, is promising, although

higher than we would like.

Figure 5.2 shows the average false positive rate plotted against the maximum

75

Figure 5.2: This graph shows the false positive rates across different sites plotted
against the total number of visits to those sites in 3 months.

number of visits made to the site during the evaluation period. It can be seen that 50

percent of the sites visited had a false positive rate less than 0.1. We also observed

that on average, the false positive rate for sites visited more number of times is lesser

than those visited fewer times. This observation means that continued use of JaSPIn

may lead to lower false positive rates. The relationship however is non-linear, since

the false positive rate is dependent on not only the number of visits, but also the

manner in which JavaScript is used on a page and consistency in user actions.

In general, the most common change to a website is its content, including text

and images. A four year study by Koehler [Koe02] found that the half-life of a web

page is approximately 2 years and web page content and functionality appears to

stabilize over time; aging pages change less often than they once did. Less frequent

updates to web pages help keep the false positive rate of JaSPIn low. Our experiments

over the past year have shown that only a small percentage of sites (4 out of 60

monitored) undergo major changes to JavaScript code. We discuss this further in the

76

Website Type Website Map file size (KB) Profile size (KB)
Dynamic http://en.wikipedia.com 3 3
JS intensive http://www.rogerstelevision.com 12 7
AJAX intensive http://mail.yahoo.com 7 6
AJAX intensive http://ajax.asp.net 6 8

Table 5.6: Space requirements for the Map file which has the list of all methods being
invoked and the Profile file which has the sequences of length 6

next chapter.

False positives can also be caused by variations in the user’s browsing pattern. Re-

searchers at Carnegie Mellon University have shown that although internet usage has

increased exponentially since the world wide web, browsing behaviors have remained

surprisingly stable [MF01]. They have found that the number of pages and domains

a user views during any particular session have remained stable. They also found that

users remain stable to their hosts and persistent in their browsing habits. Although

this research means greater accuracy can be expected from JaSPIn, user-caused false

positives are perhaps unavoidable. User-caused false positives are harder to address

and probably require more sophisticated heuristics. Such possibilities are examined

in the discussion.

5.5 Overhead

JaSPIn is installed on the author’s system, and the modified browser is used for brows-

ing by the author on a daily basis. Daily usage shows no negative impact on regular

browsing, with the exception of false positives (discussed above).We also wanted to

see if JaSPIn affected the viewing experience of the user. The time required for a

web page to load both during profile generation and profile verification is comparable

to page loads with JaSPIn turned off. We installed the Load Time Analyzer [Tea06]

on our modified Mozilla Firefox browser (v1.5) on a 512 MB RAM, 3400+ AMD

Sempron Linux 2.6.11 computer. Load Time Analyzer is a Firefox extension created

by Google that displays the number of events that are processed by a certain website

and how long it takes to load them all. The load time displayed will obviously be

influenced by the Internet connection, nonetheless it can provide a good indicator of

the influence of JaSPIn on site speed. The home page of all 60 sites in the Appendix

was loaded three times each both with JaSPIn turned off and JaSPIn in training

77

and attack detection modes. The total time to load the 60 pages three times each

was 758 seconds, compared to 897.7 seconds to load the pages during training and

927.2 during attack detection. JaSPIn, roughly has an overhead of 0.8 seconds and

0.9 seconds when using JaSPIn in training and attack detection modes respectively.

This slowdown is statistically more significant in pages that have more events being

triggered (as indicated by the Load Time Analyzer) than in pages with a lesser num-

ber of events triggered before a page loads. http://www.cnn.com had 878 triggered

events and the highest load time overhead of 4.1 seconds. Unlike rule based systems

where the detection time is proportional to the size of the signature database, at-

tack detection time in an anomaly detection system for a web page will not change

significantly once a stable profile has been generated.

The sizes of profile and map files for some sample websites visited by the author

on a regular basis are shown in Table 5.6. As is evident, given the current availability

of storage space, the amount used by JaSPIn is small.

5.6 Profile diversity - Internet web surfing simulation

The purpose of this experiment is to determine if the profiles created by different

browsing patterns are different. This is a significant measure to understand the effort

required by an attacker to mimic normal behavior.

To simulate varied browsing patterns, we used an automatic web surfing appli-

cation to generate profiles for websites. The crawler application opens a website in

our modified JaSPIn enabled browser, collects all the links on a page, and randomly

chooses the next link to open. This is continued for ten different clicks.

We chose to use http:\\www.yahoo.com as the website of choice for this exper-

iment based on its popularity (which makes it a popular attack target as well) and

extensive use of JavaScript in the pages.

Figure 5.3 shows the frequency of occurrence of each of the 449 sequences in

the policy for http://www.yahoo.com during 25 visits. The goal of this experiment

is to observe profile diversity, and understand if varying browsing behavior ran-

domly causes varying profiles. Hence, we restricted the tool to browse only pages at

78

Figure 5.3: This graph shows the number of profiles containing each sequence of
length 6 sorted by frequency. There are 25 profiles created from different visits to
http://www.yahoo.com, which in total contain 449 unique sequences.

http://www.yahoo.com, since free browsing on the yahoo.com website increased pro-

file diversity heavily. In fact, many new profiles were created for tech.yahoo.com, mu-

sic.yahoo.com and video.yahoo.com, amongst others. Adding this restriction makes

our model less natural since users do browse freely. However, it also makes profile

diversity more difficult to achieve.

20 sequences (4.49%) appear in all the profiles, while 125 sequences (27.89%)

appear only in a single profile. Each visit by the crawling aplication is different from

the other due to the randomnness introduced. This variation in behavior introduced

can be compared to variations in browsing patterns of different users. These results

thus suggest that JaSPIn’s definition of normal behavior varies from user to user.

This diversity offers the possibility that a successful attack against one user may not

work on another, even if both are accessing the same web page. We need to do more

79

work to determine if this diversity is true across all websites that use JavaScript, and

whether this diversity adds much protection in practice.

5.7 Simulated Exploits

The most common XSS attacks were tested on a vulnerable website specially created

for this purpose on our local server. The sample application is a simple community

forum built in ASP (Active Server Pages) which accepts some data from the user,

and posts it onto a web page.

Our test database of 59 XSS attacks is based on the vectors published by ha.ckers.org

[RSn08]. Our set of tests included attacks successful against Firefox 1.5. Also among

the 71 attacks available for testing, seven of the attacks are similar to the ones tested,

and use same encoding techniques. Five other flash based attacks were not tested

and are discussed below.

Table 5.8 summarizes the different categories of attacks that were tested. JaSPIn is

able to successfully detect common XSS techniques such as case sensitivity, IP encod-

ing, URL encoding, Dword encoding, hex encoding, octal encoding, mixed encoding,

accent obfuscation, usage of null characters,usage of single quotes, double quotes,

semicolon etc. Attackers can use various means to load malicious script onto a page,

but actual damage happens only when the script executes on the user’s browser.

JaSPIn monitors these executions and is able to spot changes in method invocations

caused by the attacker’s script. We have found that most of the attacks are caught

by our tracking of the relative order of property getters. Other malicious methods

with the same name as those on a web page are also detected due to variations in the

relative order in which they are invoked. JaSPIn’s attack detection capabilities are

discussed in the next chapter.

JaSPIn fails to detect any embedded flash attacks. Also, it is unable to detect

the addition of links to a page to exploit the ’feeling lucky’ feature that works if the

exploitable page is the top of any keyword search. This attack is facilitated by a

browser implementation flaw and hence is out of scope for JaSPIn as explained in

our threat model in Chapter 3. JaSPIn is unable to detect a XSS attack directly

embedded in ActionScript, the scripting language for Flash. This is because we have

80

not implemented our policy inference engine to handle ActionScript. However, given

the similarity in syntax and behavior between ActionScript and JavaScript, detecting

Flash XSS attacks does look promising using JaSPIn.

Type of Attack Number of tests Details
Basic XSS Attacks 5 No filter evasion. Caught by other de-

tection techniques as well
Character Encoding Attacks 9 Obfuscation techniques with Unicode,

Hex Encoding and UTF-7 Encoding
Embedded Character Attacks 14 Embedded encoded characters to

break up the XSS attack
HTML Element Attacks 16 Injection using different input methods

such as images, iframes, css, div etc.
Other Attacks 3 Cookie Manipulation, Renaming .js to

.jpg, JavaScript Includes
URL Obfuscation 10 URL string evasion by hiding the URL

of the site containing the malicious
code

XSS w/HTML Quote Encapsulation 2 Filter evasion
Total Attacks Detected 59

Table 5.8: Cross-site attacks detected by JaSPIn

5.8 Targeted attacks

We studied the effectiveness of our approach on the detection of previously seen XSS

attacks on vulnerable applications. Based on their popularity and availability of

known vulnerabilities, phpBB and WebCal have been selected for our experiments.

5.8.1 phpBB 2.0.19

phpBB [pG08] is the worlds leading open source discussion forum software. Many

XSS vulnerabilities have been found on sites enabled by phpBB [Sec08]. phpBB

version 2.0.19 was vulnerable to cross-site scripting attacks that relied on activated

HTML messages that are enabled in the preferences for phpBB (see Figure 5.4).

We installed this software on our local server, and generated a stable policy for

the site using JaSPIn with a window size of six and stability threshold of three. After

7 visits, a stable profile with 379 sequences was created. The exploit, as shown is

Figure 5.5 is then posted as a message on the installed board. When the message is

accessed with our modified browser and the mouse is moved over the text, JaSPIn

81

Figure 5.4: Preferences for the forum

Figure 5.5: Exploit code for phpBB

detects that a new sequence is detected onmouseover, and alerts the user as shown in

Figure 5.6.

5.8.2 WebCal (v1.11-v3.04)

WebCal is a free browser based calendar program to track of appointments, meetings,

birthdays etc. It uses perl based cgi scripts and some JavaScript to generate all the

web pages. While researching this vulnerability, we found that one of the sites using

WebCal was still vulnerable to this attack. Hence, this website was profiled, and a

sample attack, Figure 5.7 tested against it.

JaSPIn is able to detect the anomaly due to a new method invocation (Figure 5.8

82

Figure 5.6: JaSPIn is able to detect the documented XSS exploit on phpBB

Figure 5.7: Sample attack against WebCal

Figure 5.8: WebCal anomalies

5.8.3 Flash enabled JavaScript attacks

XSS attacks can be launched using Macromedia Flash [Mac08b]. Flash has its own

built in scripting language, ActionScript [Mac08a] which has a getURL() action.

This function allows the programmer to redirect the end user to another page. The

83

Figure 5.9: Flash getURL function usage

Figure 5.10: Using the getURL function to launch a XSS attack.

parameter would usually be a URL; something like http://www.ccsl.carleton.ca,

so that the script looks like Figure 5.9.

This function can be used to launch an XSS attack by replacing the URL with a

JavaScript function call as show in Figure 5.10

JaSPIn is able to detect such Flash based JavaScript attacks, since it is the actual

execution of the JavaScript function call that we monitor and not the means to get

to that point.

5.9 Summary

JaSPIn was tested on sixty different web sites for profile generation and monitoring.

These profiles become more stable as the number of visits to a web page increase.

JaSPIn was able to successfully detect fifty nine different common cross-site attacks.

It was also successful when tested on phpBB, WebCal and Macromedia Flash en-

abled sites. These results suggest that JaSPIn can defend a monitored web page

against many kinds of cross-site attacks by observing unusual patterns in JavaScript

behavior.

Chapter 6

Discussion

The past two chapters documented the creation and testing of JaSPIn. This chapter

reviews these results and places them in perspective. The first part of this chapter

summarizes our observations from the experiments in Chapter 5. We then describe

the concrete contributions of our research. Section 6.3 explains the limitations of the

current prototype and suggests ways in which it could enhanced. The last section

briefly looks at some potential future work.

6.1 Summary of results

Some of our observations include:

• Profiles for different pages on a web site may be different. JaSPIn is able to

determine if sequences of method invocations for different pages on a web site

needs to be maintained as a single profile or a set of profiles.

• The number of visits required to generate a stable profile for a web site depends

on its usage of JavaScript and the individual user. Our experiments indicate

that the number of newer sequences added to a profile decreases as the number

of visits to the site increase.

• Profiles of the same web page generated by different users may be different. Our

experiment on profile diversity used a random page selecting tool to simulate

users behaving differently on web sites. We observed that profiles of the web

site for different users had both common sequences and unique sequences.

• Window sizes affect profile generation if they are too low or too high, but do

not affect profile generation prominently for values of six or nine.

84

85

• Cross site scripting attacks based on JavaScript are immediately detected, either

because of a different JavaScript function being called or different sequence of

the function.

Method invocations from Ad-servers are also profiled as part of a given web page. Ad-

servers do not seem to have an impact on profile generation, however any changes to

the JavaScript functions from an Ad-server called in the context of a given web page

will affect the profile. The JavaScript code executed from the Ad-server is treated

as part of the web site it is embedded into,and added to the policy of that website.

Although it is possible for us to determine the source of the JavaScript file (the URL

of the .js file), we are not using this information explicitly. Perhaps future work could

make use of this information to analyze the same set of sequences from Ad-servers

being a part of various websites.

6.2 Contributions

The research presented in this work makes several contributions to the domain of

web security, specifically in the area of detecting cross-site attacks. The previous

chapter has presented evidence that short sequences of JavaScript methods are good

discriminators between normal and abnormal behavior of several common web pages

visited by a user. In essence, we have found a regularity in the order in which method

invocations happen in the JavaScript interpreter that is highly likely to be perturbed

by intrusive activities. Chapter 5 has shown that monitoring of JavaScript code

execution can be performed efficiently in real-time and can detect JavaScript based

cross-site attacks.

Our experiments were carried out on a range of sites varying in purpose and use of

JavaScript to provide a good sample test bed for JaSPIn that is representative of most

sites a user may visit. Our results are suggestive to the use of anomaly detection to

detect web based attacks. The rest of this section discusses past chapters and explains

these contributions in more detail.

As explained in Section 2.5, use of server side solutions to deal with XSS attacks

leave the user completely vulnerable if the website has not implemented any such

measures or is not able to fix the security issues on time. Our approach is implemented

86

at the client and requires no effort from the programmers to modify online web

applications.

Section 5.3 presents one of the principal contributions of this thesis, showing

that stable profiles for websites can be created automatically. The number of new

sequences that are added to the profile decreases as the number of visits increase. The

false positive rate is as low as zero for sites that have a simple interface and regular use

of JavaScript methods. Server side static analysis cross-site detection techniques have

reported false positive rates as high as 50 percent. Also, Noxes reports a false positive

rate of 5.7 percent but is unable to detect reflected XSS attacks. Other approaches,

such as dynamic taint analysis [VNJ+07] and BEEP [JSH07] have not presented their

false positive rates explicitly. Hence, a direct comparison is not possible. However,

our system has better detection capabilities than both of these approaches. Dynamic

taint analysis has not been tested against AJAX based attacks. Also, our profiles are

tighter and user specific as compared to BEEP, thereby making circumvention of the

IDS using mimicry techniques more difficult.

It is difficult to measure false alarms accurately because an IDS may have a

different false positive rate for each web page and there is no such thing as a standard

web page. Also, it is difficult to determine aspects of user activity that will cause

false alarms. As a result, it may be difficult to guarantee that we can produce the

same number and type of false alarms as found in our tests. However, JaSPIn can be

configured and tuned in a variety of ways in order to reduce the false positive rate.

Our experiments suggest that a JaSPIn enabled browser with a window size of six

and a threshold of three can be used for day to day browsing with a relatively low rate

of false positives as shown in Section 5.4. Unlike previous client based approaches,

the user does not need to maintain any white lists.

A significant benefit of our anomaly-based approach is the ability to detect never

before seen cross-site scripting attacks. Also, as seen in Section 5.7, JaSPIn is able to

detect a wide variety of XSS attacks. Our test suite is based on the XSS attack vectors

published by ha.ckers.org [RSn08]. This attack database incorporates different types

of XSS attacks which use obfuscation to evade common server-side filters and novel

mechanisms of infiltration and propagation. Except for cross-site attacks embedded

87

in a flash movie, and attacks targeted at the browser itself, JaSPIn is able to detect

all other attacks in the database.

Lastly, before any new security mechanism can be widely deployed, it must be

shown to have minimal performance impact. This is especially true in the web security

domain as any tool that makes the user’s browsing experience slower will not be

readily accepted. JaSPIn’s overhead is small enough that normal users do not notice

any difference in system performance. The results in Section 5.5 show that both

profile generation and attack detection using method invocation monitoring can be

performed in real-time with little overhead: web pages profiled in our experiments

are slowed down by less than 1 second. JaSPIn’s performance is competitive with

other client side extensions to detect cross-site attacks such as BEEP [JSH07] and

NoMoXSS [VNJ+07].

In conclusion, these results illustrate the viability of monitoring JavaScript code

execution as a mechanism to detect cross-site scripting attacks.

6.3 Limitations

The following sections discuss limitations of both our approach in general, and the

current version of JaSPIn in particular and how they could be overcome.

6.3.1 Limitations of the approach

Profiling Normal

A limitation of anomaly detection systems is that they are unable to detect attacks

until a normal profile can be established. This means that if a web page that does not

have a stable profile is subject to a cross-site attack, JaSPIn will not be able to detect

it. One way to protect more web sites would be to allow JaSPIn to detect anomalies

while new sequences were still being added to a profile. A weakness of this strategy is

that the number of false positives will also increase significantly. Perhaps the simplest

way to ensure that JaSPIn has profiles of normal program behavior would be for web

developers to distribute default profiles of normal program behavior, as required by

BEEP [JSH07]. These synthetic normal profiles could be generated similar to that

88

required for BEEP. These profiles lack information on the order in which method calls

are invoked, but over a few visits, JaSPIn will replace many of these profiles with ones

that are specialized to the usage patterns of the user. These profiles would generally

be smaller than the default synthetic normal profiles and would restrict JavaScript

behavior better.

Attacker Circumvention

Given that it is a client-level system, the attacker can attack the policy generator

itself. Since the user has no way of validating if the messages are from JaSPIn or a

compromised version of JaSPIn, the attacker can fool the user with false messages.

However, this requires sophisticated techniques and is not as easy as an XSS attack.

Like many anomaly detection systems that work at the program level, JaSPIn

is subject to mimicry attacks [WS02]. Mimicry attacks can be defined as attacks

that achieve attacker-intended effects without modifying aspects of an application

behavior that are monitored by an IDS. The principal challenge is that of making

them practical: for JavaScript inferred policies this is surely a possibility. Although

JaSPIn has been designed to monitor JavaScript calls at the interpreter level, which

includes calls from the DOM that result as part of an external script, and is dependent

on user browsing patterns, it is possible for the attacker to mimic normal behavior

by calling methods in the same sequence as the most common paths for all users. For

example, if a web page uses the onload function, it is bound to execute for all users

and if the attacker can get the set of methods following an onload, he can modify his

attack code to generate the same sequence. Increasing the window size will reduce

the chances of a successful mimicry attack, but it also means that we will require

large amounts of training and run the risk of increasing the number of false positives

significantly. Profile diversity, explained in Section 5.6 increases the effort required

to launch a mimicry attack. Some other techniques to address mimicry attacks are

explained in the Future Work section.

89

User involvement

A big plus of JaSPIn is that policies are automatically generated. However, when ab-

normal behavior is detected, user involvement is required to determine if the anomaly

is a real attack or a profile update. Ideally, we would like JaSPIn to judge for itself

whether the anomaly is an attack. An anomaly detection system by itself cannot make

this distinction. In order to be able to automatically judge whether an anomaly is

an attack, JaSPIn can be integrated as part of a layered defense mechanism where

useful information from other sources could help JaSPIn make an informed decision.

6.3.2 Limitation of our current implementation

Browser Limitation

Our current method has been implemented in Firefox and requires the average Firefox

user to install our modified version till such time that our system is robust enough

to be integrated into the main release. This also means that for every new version of

Firefox, we need to provide a new version of JaSPIn enabled Firefox. The advantage

of such a browser solution, however, is that no code changes are required on the part

of web developers.

Mass Evaluation

JaSPIn has not been evaluated across a large user population. Although this will

not affect its attack detection capabilities, it may add more information on our false

positive rate. Our current results are sufficient, however, to illustrate the applicability

of anomaly-based monitoring to cross-site attack detection.

Usability

The Firefox extension that presents the information about profiles generated and

anomalies detected is only a prototype implementation. It could be improved to

present more specific information to the user in a way that would also catch the

user’s attention immediately. Finally, a feature to view the history of changes to the

profile of websites could improve user knowledge.

90

Lack of a response mechanism

While the current IDS implementation can detect when an attack is occurring and

identify the offending function call, it currently has no offensive mechanism to stop

the program’s behavior. Implementing a reaction mechanism would allow the IDS to

reduce the impact of an attack.

6.4 Future Work

6.4.1 Resistance to mimicry attacks

In the future we intend to look at ways to make JaSPIn resistant to mimicry attacks.

Use of additional features of program execution, such as function arguments and

frequency of use increase the effort required by an attacker to mimic normal behavior.

Introducing automatic randomization of the window size would make the profiles more

difficult to mimic.

6.4.2 Reduction of the false positive rate

False positives can be reduced by increasing learning. This can be achieved by includ-

ing a time factor into the training period. Thus, training will be longer and web page

changes can be tracked. pH [Som02] was able to achieve a significant reduction the

its false positive rate by using such techniques. This is encouraging and something

we would definitely like to try in the future.

6.4.3 Detection of other JavaScript attacks

In Chapter 2, we introduced CSRF attacks 2.3.4 and other JavaScript based attacks

2.2 that do not violate the security policy. This section evaluates the possibility of

using JaSPIn to detect such attacks.

JavaScript attacks that make use of the language’s features, such as displaying

pop up windows for every mouse click or displaying multiple alert messages to the

user are annoying. JaSPIn can determine how many times a particular method call is

being invoked. Although the current version of JaSPIn does not have any way for the

user to specify behavioral policies such as those that restrict the opening of multiple

91

windows, it could be integrated into the system in the future. The core JavaScript

monitoring engine does have the knowledge required to detect such attacks and hence

the lacking functionality can be added as an additional layer in the future.

CSRF attacks are more tricky to detect than XSS attacks because the web site

is sent a malicious request from a trusted user. JaSPIn creates profiles of websites

based on user behavior. If the behavior of the malicious code is similar to that of

the user, CSRF attacks go undetected. However, if the malicious code performs an

action untypical of the user, JaSPIn detects the same. Our approach is not designed

to detect CSRF attacks and more research needs to be done to study the applicability

of anomaly based approaches to CSRF attack detection.

6.4.4 Usability

We would like to make JaSPIn user friendly by adding ways for the user to understand

the web site profiles and detected variations from the same. One way to improve

this understanding would be to provide information on which user action caused a

variation from the normal profile.

We would like to make JaSPIn available for download to get some feedback on its

accuracy and usability in day to day browsing for different users.

Also, we found JaSPIn to be a good tool just to understand the usage of JavaScript

on the internet today. Our logs provide valuable information on methods being in-

voked by a page and their relative order. This information could be analyzed by

web site owners to determine which features are most popular among its users and

understand usability of their website in general.

Chapter 7

Conclusion

Cross-site scripting vulnerabilities on the web are being discovered and disclosed

every day. While XSS attacks by themselves have been long recognized in the web

application security space, there is no indication that the problem is getting better.

Application layer attacks are difficult to detect and protect against using traditional

security mechanisms. Cross-site attacks are generally simple, but difficult to detect

because of the high flexibility that HTML encoding schemes provide to the attacker

for circumventing server-side input filters.

In this thesis we have presented a novel mechanism to infer JavaScript policies to

protect against cross-site scripting attacks. We used the principles of anomaly based

intrusion detection systems to profile web sites based on their sequence of JavaScript

calls. We extended the JavaScript engine in Firefox (SpiderMonkey) and implemented

a Firefox extension to manage the profiles. The browsing speed overhead of using our

tool is minimal and observed false alarm rate low.

Although more work needs to be done in minimizing user intervention on detection

of policy violations, we consider this work to be a good first step.

92

Appendix A

Appendix A - Common JavaScript Methods

Table A.1: Summary of common objects and their re-

spective methods in JavaScript. This table has been de-

rived from the chapters in [Fla98]

Object Properties Methods Event Handlers

Window defaultStatus alert onLoad

frames blur onUnload

opener close onBlur

parent confirm onFocus

scroll focus

self open

status prompt

top clearTimeout

window setTimeout

Frame defaultStatus alert none

frames blur

opener close

parent confirm

scroll focus

self open

status prompt

top clearTimeout

window setTimeout

Location hash reload none

Continued on Next Page. . .

93

94

Table A.1 – Continued

Object Properties Methods Event Handlers

host replace

hostname

href

pathname

por

protocol

search

History length back none

forward

go

Navigator appCodeName javaEnabled none

appName

appVersion

mimeTypes

plugins

userAgent

document alinkColor clear none

anchors close

applets open

area write

bgColor writeln

cookie

fgColor

forms

images

lastModified

linkColor

Continued on Next Page. . .

95

Table A.1 – Continued

Object Properties Methods Event Handlers

links

location

referrer

title

vlinkColor

image border none none

complete

height

hspace

lowsrc

name

src

vspace

width

form action submit onSubmit

elements reset onReset

encoding

FileUpload

method

name

target

text defaultValue focus onBlur

name blur onCharge

type select onFocus

value onSelect

Built-in Objects

Continued on Next Page. . .

96

Table A.1 – Continued

Object Properties Methods Event Handlers

Array length join none

reverse

sort xx

Date none getDate none

getDay

getHours

getMinutes

getMonth

getSeconds

getTime

getTimeZoneoffset

getYear

parse

prototype

setDate

setHours

setMinutes

setMonth

setSeconds

setTime

setYear

toGMTString

toLocaleString

UTC

String length anchor

prototype big

blink

Continued on Next Page. . .

97

Table A.1 – Continued

Object Properties Methods Event Handlers

bold

charAt

fixed

fontColor

fontSize

indexOf

italics

lastIndexOf

link

small

split

strike

sub

substring

sup

toLowerCase

toUpperCase

Appendix B

Profile and Map file Sample

B.1 shows a sample Map file. The map file contains the list of all methods that have

been invoked during the execution of the web page. B.2 shows the profile file with

a window size of 6. Each of the numbers in the profile file maps to a method in the

map file for that web site.

Figure B.1: Part of a map file

98

99

Figure B.2: Part of a sample profile file

Appendix C

List of web sites used in our evaluations of JaSPIn

Table C.1: List of web sites profiled in our Evaluation

of JaSPIn. The first column gives the top level URL of

the web site, the second column categorizes based on its

use of JavaScript (JS), the third column indicates the

number of visits to that site after a stable profile has

been established and the fourth column gives the false

positive rate.

Web site profiled Type Visits FP

http://charanshappyhours.org JS Intensive 3 0.000

http://mail.yahoo.com AJAX 49 0.020

http://opl.ottawa.on.ca JS Intensive 46 0.022

http://www.petplace.com/ JS Intensive 43 0.023

http://balasubramanians.com/ Moderate JS Use 39 0.026

https://dev.rwdg.net JS Intensive 77 0.026

http://www.yahoo.com AJAX 70 0.029

http://timesofindia.indiatimes.com/? Moderate JS Use 34 0.029

http://www.cs.unibo.it/ds-rt2007/ Moderate JS Use 31 0.032

http://nemoboy.blogspot.com Moderate JS Use 29 0.034

http://www.orkut.com AJAX 47 0.043

https://webmail.magma.ca AJAX 22 0.045

http://www.raaga.com Moderate JS Use 20 0.050

http://ajaxwhois.com/ AJAX 19 0.053

http://www.carlinganimalhospital.com/ JS Intensive 35 0.057

http://www.youtube.com JS Intensive 32 0.063

Continued on Next Page. . .

100

101

Table C.1 – Continued

Web site profiled Type Visits FP

http://www.cardelhomes.com Moderate JS Use 46 0.065

http://ccsl.carleton.ca Moderate JS Use 15 0.067

http://www.eidosglobal.com Moderate JS Use 15 0.067

http://www.google.com JS Intensive 14 0.071

http://www.costco.ca JS Intensive 38 0.079

http://www.gmail.com AJAX 62 0.081

http://maps.google.com/ AJAX 12 0.083

http://slashdot.org JS Intensive 24 0.083

http://www.theweathernetwork.com/ Moderate JS Use 45 0.089

http://www.ieee.com JS Intensive 10 0.100

https://www.webupdates.tv JS Intensive 91 0.110

http://sears.ca JS Intensive 25 0.120

http://safari.oreilly.com/ JS Intensive 8 0.125

http://lxer.com/ JS Intensive 32 0.125

http://www.flickr.com AJAX 7 0.143

http://www.microsoft.com AJAX 7 0.143

http://www.books24x7.com/ JS Intensive 14 0.143

http://www.gerber.com JS Intensive 14 0.143

http://ajax.asp.net AJAX 6 0.167

http://ca.mcafee.com JS Intensive 6 0.167

http://ieee.ca JS Intensive 18 0.167

http://tdcanadatrust.com JS Intensive 35 0.171

0.186

http://www.cnn.com JS Intensive 5 0.200

http://www.cs.unibo.it/projects/mswim2007/ Moderate JS Use 5 0.200

http://www.pizzapizza.com JS Intensive 20 0.200

http://www.rogerstv.com JS Intensive 54 0.204

Continued on Next Page. . .

102

Table C.1 – Continued

Web site profiled Type Visits FP

http://www.smc2007.org/ Moderate JS Use 18 0.222

http://www.library.carleton.ca/ JS Intensive 40 0.225

http://www.rediff.com JS Intensive 4 0.250

http://www.cra-arc.gc.ca JS Intensive 4 0.250

http://www.gerber.com JS Intensive 8 0.250

http://www.petsymposium.org/2007/ Moderate JS Use 7 0.286

http://www.facebook.com/ AJAX 14 0.286

http://www.imdb.com Moderate JS Use 14 0.286

http://en.wikipedia.com Moderate JS Use 12 0.333

http://www.petsmart.com JS Intensive 5 0.400

http://www.rogers.com JS Intensive 72 0.472

http://www.achannel.ca JS Intensive 21 0.476

http://www.indianrail.gov.in/ JS Intensive 2 0.500

http://www.ieee.ca/epc07 Moderate JS Use 2 0.500

http://www.cpac.ca Moderate JS Use 4 0.500

http://www.goodlifefitness.ca/ JS Intensive 22 0.545

http://www.site.uottawa.ca/~cadams/sac2007/ Moderate JS Use 3 0.667

http://www.tamilmatrimony.com/ JS Intensive 15 0.867

Appendix D

List of attacks used in our evaluations of JaSPIn

Table D.1: List of attacks tested in our Evaluation of

JaSPIn. The first column gives the attack type, and the

second column the attack name to identify what it does.

Detailed code for each of these attacks can be found at

[RSn08]

Attack Type Attack name

Basic XSS Attacks XSS Locator

Basic XSS Attacks XSS Quick Test

Basic XSS Attacks SCRIPT w/Alert()

Basic XSS Attacks SCRIPT w/Source File

Basic XSS Attacks SCRIPT w/Char Code

Character Encoding Attacks Case Insensitive

Character Encoding Attacks HTML Entities

Character Encoding Attacks Grave Accents

Character Encoding Attacks Image w/CharCode

Character Encoding Attacks DIV w/Unicode

Character Encoding Attacks Hex Encoding w/out Semicolons

Character Encoding Attacks Escaping JavaScript escapes

Character Encoding Attacks End title tag

Character Encoding Attacks STYLE w/broken up JavaScript

Embedded Character Attacks Embedded Tab

Embedded Character Attacks Embedded Encoded Tab

Embedded Character Attacks Embedded Newline

Embedded Character Attacks Embedded Carriage Return

Continued on Next Page. . .

103

104

Table D.1 – Continued

Attack Type Attack name

Embedded Character Attacks Multiline w/Carriage Returns

Embedded Character Attacks Null Chars 1

Embedded Character Attacks Null Chars 2

Embedded Character Attacks Spaces/Meta Chars

Embedded Character Attacks Non-Alpha/Non-Digit

Embedded Character Attacks Non-Alpha/Non-Digit Part 2

Embedded Character Attacks No Closing Script Tag

Embedded Character Attacks Extraneous Open Brackets

Embedded Character Attacks Malformed IMG Tags

Embedded Character Attacks No Quotes/Semicolons

HTML Element Attacks BGSOUND

HTML Element Attacks BODY background-image

HTML Element Attacks BODY ONLOAD

HTML Element Attacks DIV background-image 1

HTML Element Attacks DIV expression

HTML Element Attacks FRAME

HTML Element Attacks IFRAME

HTML Element Attacks INPUT Image

HTML Element Attacks US-ASCII encoding

HTML Element Attacks META

HTML Element Attacks OBJECT

HTML Element Attacks STYLE

HTML Element Attacks Stylesheet

HTML Element Attacks Remote Stylesheet 1

HTML Element Attacks TABLE

HTML Element Attacks TD

Other Attacks Cookie Manipulation

Continued on Next Page. . .

105

Table D.1 – Continued

Attack Type Attack name

Other Attacks Rename .js to .jpg

Other Attacks JavaScript Includes

URL Obfuscation IP Encoding

URL Obfuscation URL Encoding

URL Obfuscation Dword Encoding

URL Obfuscation Hex Encoding

URL Obfuscation Octal Encoding

URL Obfuscation Mixed Encoding

URL Obfuscation Protocol Resolution Bypass

URL Obfuscation Firefox Lookups 1

URL Obfuscation Firefox Lookups 2

URL Obfuscation Removing Cnames

XSS w/HTML Quote Encapsulation Evade Regex Filter

XSS w/HTML Quote Encapsulation Filter Evasion

Bibliography

[Ado07] Adobe. Cross-site scripting vulnerability in versions 7.0.8 and earlier
of adobe reader and acrobat, 2007. http://www.adobe.com/support/

security/advisories/apsa07-01.html.

[Axe00] Stefan Axelsson. Intrusion detection systems: A survey and taxonomy.
Technical Report 99-15, Chalmers Univ., March 2000.

[BAP+03] Elena Gabriela Barrantes, David H. Ackley, Trek S. Palmer, Darko Ste-
fanovic, and Dino Dai Zovi. Randomized instruction set emulation to
disrupt binary code injection attacks. In 10th ACM conference on Com-
puter and communications security, pages 281–289. ACM Press., October
27-30 2003.

[CER00] Cert advisory ca-2000-02 malicious html tags embedded in client web
requests., February 2000.

[CER06] US CERT. Vulnerability note vu808921, March 2006. http://www.kb.

cert.org/vuls/id/808921.

[Cor06] Microsoft Corporation. Mitigating cross-site scripting with http-only
cookies, 2006.

[Cor08] Mozilla Corporation. Spidermonkey, 2008. http://www.mozilla.org/

js/spidermonkey/.

[DTH06] Rachna Dhamija, J. D. Tygar, and Marti Hearst. Why phishing works.
In CHI ’06: Proceedings of the SIGCHI conference on Human Factors in
computing systems, pages 581–590, New York, NY, USA, 2006. ACM.

[ECM99] ECMA. Standard ecma-262: Ecmascript language specification,
1999. http://www.ecma-international.org/publications/standards/Ecma-
262.htm.

[FHSL96] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A.
Longstaff. A sense of self for unix processes. In The 1996 IEEE Symposium
on Security and Privacy, page 120. IEEE Computer Society, May 6-8
1996.

[Fla98] David Flanagan. JavaScript: The Definitive Guide. O’Reilly & Asso-
ciates, Inc., Sebastopol, CA, USA, 1998.

[Fog07] Seth Fogie. Cross Site Scripting Attacks. Syngress, City, 2007.

106

107

[Fou08] Mozilla Foundation. Firefox, 2008. http://www.mozilla.com/en-US/

firefox/.

[FP07] K. Fernandez and D. Pagkalos. Xssed project, 2007. http://www.xssed.
com.

[HAN96] J HANCOCK. Signal Detection Theory. McGraw-Hill, 1996.

[Har88] Norm Hardy. The confused deputy. Technical report, Key Logic, Inc.,
1988.

[HFS98] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion
detection using sequences of system calls. J.Comput.Secur., 6(3):151–180,
1998.

[HV05] Oystein Hallaraker and Giovanni Vigna. Detecting malicious javascript
code in mozilla. In ICECCS ’05: Proceedings of the 10th IEEE Interna-
tional Conference on Engineering of Complex Computer Systems, pages
85–94, Washington, DC, USA, 2005. IEEE Computer Society.

[HYH+04] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai
Lee, and Sy-Yen Kuo. Securing web application code by static analysis
and runtime protection. In WWW ’04: Proceedings of the 13th inter-
national conference on World Wide Web, pages 40–52, New York, NY,
USA, 2004. ACM.

[IEKY04] Omar Ismail, Masashi Etoh, Youki Kadobayashi, and Suguru Yamaguchi.
A proposal and implementation of automatic detection/collection system
for cross-site scripting vulnerability. In AINA ’04: Proceedings of the
18th International Conference on Advanced Information Networking and
Applications, page 145, Washington, DC, USA, 2004. IEEE Computer
Society.

[IF02] Hajime Inoue and Stephanie Forrest. Anomaly intrusion detection in
dynamic execution environments. In NSPW ’02: Proceedings of the 2002
workshop on New security paradigms, pages 52–60, New York, NY, USA,
2002. ACM.

[Inc02] Sanctum Inc.(IBM). Appshield - application security firewall, 2002. http:
//whitepapers.silicon.com/0,39024759,60044497p,00.htm.

[Int99] Ecma International. Ecmascript language specification, 1999.

[JB07] Martin Johns and Christian Beyerlein. Smask: preventing injection at-
tacks in web applications by approximating automatic data/code separa-
tion. In SAC ’07: Proceedings of the 2007 ACM symposium on Applied
computing, pages 284–291, New York, NY, USA, 2007. ACM.

108

[JKK06] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Precise alias
analysis for static detection of web application vulnerabilities. In PLAS
’06: Proceedings of the 2006 workshop on Programming languages and
analysis for security, pages 27–36, New York, NY, USA, 2006. ACM.

[JSH07] Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating script injection
attacks with browser-enforced embedded policies. In WWW ’07: Pro-
ceedings of the 16th international conference on World Wide Web, pages
601–610, New York, NY, USA, 2007. ACM.

[KKP03] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Counter-
ing code-injection attacks with instruction-set randomization. In CCS
’03: Proceedings of the 10th ACM conference on Computer and commu-
nications security, pages 272–280, New York, NY, USA, 2003. ACM.

[KKVJ06] Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad Jovanovic.
Noxes: a client-side solution for mitigating cross-site scripting attacks. In
SAC ’06: Proceedings of the 2006 ACM symposium on Applied computing,
pages 330–337, New York, NY, USA, 2006. ACM.

[KMVV03] Christopher Kruegel, Darren Mutz, Fredrik Valeur, and Giovanni Vigna.
On the detection of anomalous system call arguments. In 8th European
Symposium on Research in Computer Security (ESORICS), 2003.

[Koe02] Wallace Koehler. Web page change and persistence-a four-year longitu-
dinal study. In Journal of the American Society for Information Science
and Technology, pages 162–171. John Wiley and Sons, Inc., 2002.

[Kre] Brian Krebs. Washington post security blog.

[KV03] Christopher Kruegel and Giovanni Vigna. Anomaly detection of web-
based attacks. In 10th ACM Conference on Computer and Communica-
tions Security (CCS), 2003.

[KVV04] Christopher Kruegel, Fredrik Valeur, and Giovanni Vigna. Intrusion De-
tection and Correlation: Challenges and Solutions (Advances in Infor-
mation Security), volume 1. Springer-Verlag TELOS, Santa Clara, CA,
USA, 2004.

[Law07] George Lawton. Web 2.0 creates security challenges. Computer,
40(10):13–16, 2007.

[Mac08a] Macromedia. Actionscript technology center, 2008. http://www.adobe.

com/devnet/actionscript/.

[Mac08b] Macromedia. Adobe flash player, 2008. http://www.macromedia.com/

software/flash/about/.

109

[Mao08] Giorgio Maone. Noscript - firefox extension, 2008. http://noscript.

net/.

[MF01] Alan L. Montgomery and Christos Faloutsos. Identifying web browsing
trends and patterns. Computer, 34(7):94–95, 2001.

[Min05] Yasuhiko Minamide. Static approximation of dynamically generated web
pages. In WWW ’05: Proceedings of the 14th international conference on
World Wide Web, pages 432–441, New York, NY, USA, 2005. ACM.

[Net08] NetCraft. June 2008 web server survey, 2008.

[Nom06] Nomensa. United nations global audit of web accessibility, Dec 06 2006.

[OSW08] T. Oda, A. Somayaji, and T. White. ¡b style=”color:black;background-
color:ffff66”¿content provider conflict on the modern web¡/b¿. In 3rd
Annual Symposium on Information Assurance (ASIA’08), Jun 2008.

[PFH03] Niels Provos, Markus Friedl, and Peter Honeyman. Preventing privilege
escalation. In SSYM’03: Proceedings of the 12th conference on USENIX
Security Symposium, pages 16–16, Berkeley, CA, USA, 2003. USENIX
Association.

[pG08] phpBB Group. phpbb.com - creating communities., 2008. http://www.

phpbb.com.

[Pro03] Niels Provos. Improving host security with system call policies. In
SSYM’03: Proceedings of the 12th conference on USENIX Security Sym-
posium, pages 18–18, Berkeley, CA, USA, 2003. USENIX Association.

[RDW+07] C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and S. Esmeir. Browser-
shield: Vulnerability-driven filtering of dynamic html. ACM Transactions
on the Web, 1(3), 2007.

[RSn08] RSnake. Xss (cross site scripting) cheat sheet. esp:for filter evasion., 2008.
http://ha.ckers.org/xss.html.

[Rud01] Jesse Ruderman. The same origin policy, August 24 2001. http://www.

mozilla.org/projects/security/components/same-origin.html.

[RVKK06] William Robertson, Giovanni Vigna, Christopher Kruegel, and
Richard A. Kemmerer. Using generalization and characterization tech-
niques in the anomaly-based detection of web attacks. In In Proceed-
ings of the 13 th Symposium on Network and Distributed System Security
(NDSS, 2006.

[Sec08] Secunia. Vulnerabilities summary for phpbb2.x, 2008. http://secunia.
com/product/463/?task=statistics.

110

[SMS99] Matthew Stillerman, Carla Marceau, and Maureen Stillman. Intrusion
detection for distributed applications. Communications of the ACM,
42(7):62–69, 1999.

[Som02] Anil Buntwal Somayaji. Operating system stability and security through
process homeostasis, 2002.

[SS02a] David Scott and Richard Sharp. Abstracting application-level web secu-
rity. In WWW ’02: Proceedings of the 11th international conference on
World Wide Web, pages 396–407, New York, NY, USA, 2002. ACM.

[SS02b] David Scott and Richard Sharp. Spectre: A tool for inferring, specifying,
and enforcing web-security. Technical report, Cambridge University, 2002.

[SW06] Zhendong Su and Gary Wassermann. The essence of command injec-
tion attacks in web applications. In POPL ’06: Conference record of the
33rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 372–382, New York, NY, USA, 2006. ACM.

[Tea06] Google Team. Load time analyzer, 2006. https://addons.mozilla.

org/en-US/firefox/addon/3371.

[UELX07] Úlfar Erlingsson, Benjamin Livshits, and Yinglian Xie. End-to-end web
application security. In HOTOS’07: Proceedings of the 11th USENIX
workshop on Hot topics in operating systems, pages 1–6, Berkeley, CA,
USA, 2007. USENIX Association.

[VNJ+07] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vi-
gna. Cross-site scripting prevention with dynamic data tainting and static
analysis. In Proceeding of the Network and Distributed System Security
Symposium (NDSS), San Diego, CA, February 2007.

[W3C04] W3C. Document object model, 2004. http://www.w3.org/DOM/.

[W3C07] W3C. The xmlhttprequest object, 2007. http://www.w3.org/TR/

XMLHttpRequest/.

[Wag99] David A. Wagner. Janus: an approach for con-
finement of untrusted applications. Technical report,
University of California at Berkeley, 1999. source:
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oaicstrlh

[War01] Peter Warren. Teaching programming using scripting languages. J. Com-
put. Small Coll., 17(2):205–216, 2001.

[WD01] David Wagner and Drew Dean. Intrusion detection via static analysis.
In SP ’01: Proceedings of the 2001 IEEE Symposium on Security and
Privacy, page 156, Washington, DC, USA, 2001. IEEE Computer Society.

111

[WFP99] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. Detect-
ing intrusions using system calls: Alternative data models. In In IEEE
Symposium on Security and Privacy, pages 133–145. IEEE Computer So-
ciety, 1999.

[WS02] David Wagner and Paolo Soto. Mimicry attacks on host-based intrusion
detection systems. In CCS ’02: Proceedings of the 9th ACM conference
on Computer and communications security, pages 255–264, New York,
NY, USA, 2002. ACM.

[WS08] Gary Wassermann and Zhendong Su. Static detection of cross-site script-
ing vulnerabilities. In ICSE ’08: Proceedings of the 30th international
conference on Software engineering, pages 171–180, New York, NY, USA,
2008. ACM.

[XBS06] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced policy en-
forcement: a practical approach to defeat a wide range of attacks. In
USENIX-SS’06: Proceedings of the 15th conference on USENIX Security
Symposium, pages 9–9, Berkeley, CA, USA, 2006. USENIX Association.

[YCIS07] Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov. Javascript
instrumentation for browser security. In POPL ’07: Proceedings of the
34th annual ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 237–249, New York, NY, USA, 2007. ACM.

