
Software diversity: Security, Entropy and Game Theory

Saran Neti
Carleton University

saran@ccsl.carleton.ca

Anil Somayaji
Carleton University

soma@ccsl.carleton.ca

Michael E. Locasto
University of Calgary

locasto@ucalgary.ca

Abstract
Although many have recognized the risks of software
monocultures, it is not currently clear how much and
what kind of diversity would be needed to address these
risks. Here we attempt to provide insight into this issue
using a simple model of hosts and vulnerabilities con-
nected in a bipartite graph. We use this graph to com-
pute diversity metrics as Renyi entropy and to formulate
an anti-coordination game to understand why computer
host owners would choose to diversify. Since security
isn’t the only factor considered when choosing software
in the real world, we propose a slight variation of the
popular security wargame Capture the Flag that can serve
as a testbed for understanding the utility of diversity as a
defense strategy.

1 Introduction

Monocolture first became a significant problem in the
agriculture industry where use of a single variety of seed
can make an entire harvest susceptible to complete de-
struction by a single pest [3]. The software ecosystem
faces a similar problem as noted by several researchers
[14, 5, 18]. Specifically, the over-reliance on certain
pieces of software, whether they be operating systems or
applications, has been cited as increasing the likelihood
and severity of widespread security compromises.

Software diversity is an intuitive but imprecise term
used to express the idea that variability can improve
the survivability of a population. Diversity as a mech-
anism for fault tolerance was put forth as n-version
programming [1] in mid-1980s. Diversity for security
exists in various forms including compile time diver-
sity [4], run time diversity [8], automatic patch gener-
ation [13] and automatic signature detection [16]. While
diversity-inspired defense strategies can have limitations
(e.g., ASLR derandomization attacks [12]), they can
also be very effective in practice, particularly to miti-

gate memory corruption attacks. To date, however, di-
versity/randomization strategies have not been shown to
provide general increases in software security.

To better understand in what circumstances diversity
is an effective defense strategy and the kind of diversity
that is needed to provide protection, we believe we need
a more rigorous understanding of the concept of diver-
sity. There has been some work on formalizing diversity
in the past. For example, O’Donnell and Sethu analyzed
distributed coloring algorithms to assign packages to sys-
tems on a network for increased diversity [11], and Chen
et. al. estimated diversity based on tradeoffs of interop-
erability and security [17].

In this paper we take a new approach to formalizing
diversity by modeling it as the entropy computed using
a bipartite graph interconnecting hosts and vulnerabili-
ties. While our model is built upon many simplifying as-
sumptions, as we will show it maintains enough richness
to enable a plausible, entropy-based measurement of di-
versity of deployed systems. It also allows us to explore
diversity from a game theoretic perspective.

This paper makes three contributions. First we intro-
duce entropy as a measure of diversity for software and
use it to numerically estimate the diversity of software
ecosystems. Second, we introduce an anti-coordination
game that captures the interplay of choice, diversity, and
the scalability of risk. Finally, we present a slight mod-
ification to a popular online security game “Capture the
Flag” that could potentially help explore the utility of di-
versity as a strategy in the context of cyber conflict.

2 Model and Assumptions

To create an analytically tractable model of software di-
versity, we need to make a number of simplifying as-
sumptions. We have chosen to model diversity by fo-
cusing on the interactions between hosts and vulnera-
bilities. The rationale for this choice is that all hosts
must run some set of software, and any such software



Figure 1: An example graph G of non-uniform vulner-
ability distribution with n hosts, m vulnerabilities and 3
vulnerabilities per host

will have some number of vulnerabilities. We are specif-
ically not specifying what it means for two hosts to have
the “same” vulnerability. In prinicple, two very different
pieces of software could be compromised by the same
exploit even if they share no code in common. In prac-
tice, however, common vulnerabilities generally derive
from common code or shared specifications. Thus, by
focusing on hosts and the vulnerabilities they have, we
can avoid the complexities of modeling software explic-
itly while still capturing the essence of diversity, namely
that multiple targets will not all be compromised by the
same attacks.

More precisely, our model consists of a set of n hosts,
H, a set of m vulnerabilities V , and a mapping from every
host to a subset of V . These relationships can be visual-
ized as a bipartite graph as shown in Figure 1. Hosts
and vulnerabilities comprise vertices of a bipartite graph
and an edge between hi and v j indicates that host hi runs
software that contains vulnerability v j.

Implicit in this model are a number of simplifying as-
sumptions:

1. Computer equivalence: We assume that each host
is of equal value to the attacker. This assumption is
meant to approximate attackers targeting large num-
bers of consumer machines, rather than targeted at-
tacks against corporate or military systems.

2. Software vulnerability equivalence and equidis-
tribution: Vulnerabilities cannot be completely

eliminated from a large software stack. So, instead
of saying a host chooses software, we say a host
chooses vulnerabilities. Further, we assume every
host has to choose k vulnerabilities—every host ver-
tex hi ∈ H has the same degree k.

3. Vulnerability criticality and reachability: We as-
sume that all vulnerabilities are equally hard to find
and the result of exploiting any such vulnerability is
the same: complete compromise of the host.

4. Steady State assumption: Our analysis is confined
to steady state where the number of vulnerabilities
that exist do not change over time.

Clearly these assumptions are significant simplifica-
tions. But consider this: high value targets on the In-
ternet are, by their nature, rare relative to numerous low
value consumer systems. Less critical vulnerabilities are
often chained together to produce attacks that completely
breach system security. Major operating systems and ap-
plications all consist of comparable volumes of code, and
all of these code bases have been shown to have signifi-
cant numbers of vulnerabilities. And, the rate of vulner-
ability disclosure in popular code bases continues to be
large, even though software is being patched at an ever
increasing rate. Thus, while our assumptions preclude
our model from applying to every computer system, it
does allow us to capture the dynamics of commodity sys-
tems running mainstream software that are in a constant
state of code flux due to frequent patching—the situation
for most hosts connected to the Internet today.

3 Diversity measures

We now use the bipartite graph G (see Figure 1) to rep-
resent diversity as follows. If the vulnerabilities from V
are uniformly distributed among hosts, diversity is high
and a compromise of any one vulnerability affects nk/m
hosts, while a skewed distribution leads to reduced diver-
sity and, in an extreme case, would let an attacker take
down all n hosts using one vulnerability.

We now wish to formalize this notion. Diversity mea-
sures as used in ecology literature are an obvious choice.
However, there is no one unified measure that captures
everything about diversity [7]; instead, we have a contin-
uum of measures. If a host h chosen at random finds a
vulnerability v connected to it, let pi be the probability
that v = vi. We have pi = deg(vi)/kn where deg(v) is the
degree of the vertex associated with vulnerability v.

Definitions. (See [7]) Given the fraction of edges con-
nected to each vulnerability vertex, pi, Diversity number
Na is defined as :



Figure 2: Market share data and the number of vulner-
abilities reported in NVD for Operating Systems and
Browsers in 2011. Every host chooses an OS and a
browser. Note, to simplify presentation in this figure
each vi represents the set of vulnerabilities associated
with a given piece of software.

Figure 3: Calculating diversity numbers Na for the soft-
ware ecosystem shown in Figure 2. Note that Renyi en-
tropy Ha = log(Na) and a special case of that when a = 1
is Shannon entropy. G1 is obtained by treating all vulner-
abilities from each category as just one vulnerability. G2
is calculated by weighing each category with the num-
ber of vulnerabilities. G3 is for when all OSs have equal
market share.

Na = (
m

∑
i=1

pa
i )

1/1−a (1)

Na is the reciprocal of the (a− 1)th root of weighted
mean of the (a−1)th powers of pi where weights them-
selves are the relative proportion of edges connected
to vulnerabilities. N0 counts the number of vulnera-
bilities while for a = 1, we get N1 = lima→1 Na which
corresponds to Shannon entropy, i.e log(N1) = H =
−∑

m
i=1 pilog(pi). As the value of a increases from−∞ to

+∞, the diversity number Na changes the weightage as-
signed from the least connected vulnerabilities to highly
connected vulnerabilities.

For an illustration on how to calculate diversities, we
look at a real world example. Figure 2 shows a host-
vulnerability graph of desktop operating systems during
2011. Market share data is taken from [9] and publicly
disclosed vulnerability statistics are taken from NVD
[10]. We assume that every host has to choose one OS
and one browser. Further, for simplicity we assume that
all three browsers run on all operating systems1 Figure 3
plots Na for various values of a.

The first graph G1 is computed by assuming that all
vulnerabilities from each category, e.g “Linux”, “Fire-
fox”, are lumped together. This is supported by the
fact that a host cannot choose some vulnerabilities from
“Chrome” and some from “Firefox”, it has to choose
software as a whole. If n is the number of hosts, there
are 2n edges. Therefore, vulnerability degrees are {pi} =
{ 0.91n

2n , 0.03n
2n , 0.06n

2n , 0.56n
2n , 0.23n

2n , 0.21n
2n } from which one can

compute Na. In G1, the number of vulnerabilities/host is
constant as in our original model, but for that we disre-
gared the actual number of vulnerabilities reported.

In G2, we weight each vulnerability category (e.g
“Windows”) with the number of vulnerabilities reported
(e.g 244). In this case different combinations of OS and
Browser will lead to different numbers of vulnerabili-
ties/host. {pi} = {244 ∗ 0.91n

tot ,57 ∗ 0.03n
tot ,204 ∗ 0.06n

tot ,99 ∗
0.56n

tot ,106∗ 0.23n
tot ,266∗ 0.21n

tot }, where tot is the total num-
ber of edges. This results in lower entropy because the
number of vulnerabilities reported for each category is
distributed more evenly than the corresponding market
share resulting in increased skewness. G3 is the hypo-
thetical case for comparision where all operating sys-
tems have the same market share, resulting in the high-
est diversity. If browsers are also assumed to be equally
distributed, we obtain a horizontal straight line passing
through N0.

Which specific measure to use depends on relative
weighting in the exponent one wishes to use for the least

1Note that technologies such as WINE for running Windows bina-
ries on Linux and MacOS make this assumption not completely arbi-
trary.



connected or highly connected vulnerabilities. Although
our example considers only browser and OS-specific vul-
nerabilities, it is possible to include a larger variety of
software if market share for each is known. An inter-
esting exercise would be to calculate diversity values for
UNIX-like systems at the kernel, userspace, and appli-
cation level especially since several variants and forks
exist. Granularity of choice is a crucial difference in this
example from our ideal model, and entropy as a diversity
measure is highly sensitive to this kind difference. In
order to increase diversity, we not only have to increase
the amount of choice, but also have to make software in
components that can be intermixed easily. As a trivial ex-
ample, suppose the SSL libraries openssl and gnutls are
100% API-level compatible so each can be replaced with
the other. If this were the case, then a user or a package
manager, depending on market share values and security
track records, could decide which library to install and
use.

4 Games for diversity

Increasingly game theory is proving to be a useful tool in
understanding strategies of attackers and defenders and
outcomes of the games they play. The recently proposed
FlipIt game aims to analyse situations where it is unclear
if the defender or the attacker is in control of a host [15].
In diversity, we would like to analyse choice—how much
choice is needed—and given some amount of choice,
how does a host choose. In this section we study the
second half of this question.

Anti-coordination games. These are two player, two
strategy games where it is preferred that both players
choose different strategies. Consider two hosts h1,h2 and
two vulnerabilities v1,v2, such that both h1 and h2 are
connected to v1. Suppose v1 gets compromised. Each
host now has two choices : to stay with v1 or to switch
to v2. Since switching involves potentially installing new
software, getting it to interoperate and getting a user fa-
miliar with it, we associated a cost, cw with it. But if
both players continue to use v1, they risk another attack.
So there is a cost of sharing a vulnerability, c2 which is
over and above the intrinsic cost of having just one vul-
nerability c0. The corresponding payoff matrix is shown
in Figure 4(a). An interesting case is when cw < c2,
i.e., it is less expensive to switch than to risk sharing a
vulnerability. There are two pure strategy Nash equilib-
ria, (Stay,Switch), (Switch,Stay) and one mixed strat-
egy Nash equilibrium where both players choose to stay
with a probability (c2+cw)/2c2. In a large population of
hosts, the interpretation of a mixed strategy Nash equi-
librium implies that even though software community
might make it cheaper to switch to an alternative soft-
ware, some hosts will choose to stay with their existing

software. This indicates that over and above providing
ample choice for hosts some form of coordination to dis-
tribute software is useful.

Dispersion Games. Two player anti-coordination
games generalized to many players and actions are called
Dispersion games [6]. In essence, these are games where
utilities are such that given a choice of strategies for ev-
ery agent, maximally dispersed outcomes are preferred.
More formally, a normal form game G is a tuple <
H,A,�i>, where H is the set of agents, A is the set of
actions available and �i is the preference relation over
outcomes O = An for agent hi. In our case we assume
that any host can choose any vulnerability, i.e., all agents
have the same set of actions A. Some assumptions made
in Section 2 translate to assumptions about symmetries in
Dispersion games, e.g Vulnerability criticality translates
to Action symmetry. (see [6] for definitions).

For diversity, we study a specific game where a max-
imally dispersed outcome is preferred but it costs to
switch to strategies that lead to it. Figure 4(b) shows n
hosts, m << n vulnerabilities where initially all hosts are
connected to just one vulnerability vc. The question we
want to ask is: suppose vc is compromised and it costs cw
to switch to a different vulnerability, what will the final
graph look like? How many hosts switch and how many
remain on vc?

To answer these questions, we first have to introduce a
scalability factor. If a host chooses a vulnerability v such
that deg(v) = x, then the utility due to interoperability
and ease of creating and sharing software might grow as
share(x) while the risk associated with increased number
of hosts choosing the same software leading to higher
probability of attacks might be risk(x). We define the
scalability cost as a monotonic function Π(x) = risk(x)−
share(x). Let c0 be the intrinsic cost of choosing a lone
vulnerability, v, i.e., deg(v) = 1. Then c0Π(x) is the cost
of choosing v such that deg(v) = x.

As before, let cw = cost of switching from one vulner-
ability to another and o=< a1,a2, ...,an > be an outcome
of this game where ai ∈V is the action taken by host hi.
Further let no

ai
= number of hosts choosing ai in o. The

utility of a host does not depend on the specific hosts
choosing ai, but only on the number of hosts that have
selected it. Therefore, utility for a host choosing ai in an
outcome o is

Uai(o) =−c0Π(no
ai
)− cw(1−δaiac) (2)

where δi j is the Kronecker delta function. If a host
chooses a j over ak, then we must have

c0(Π(no
ak
)−Π(no

a j
))+ cw(δa jac −δakac)≥ 0 (3)

If j 6= c and k 6= c, we get Π(no
ak
) ≥ Π(no

a j
), and sym-

metrically, a host that chooses ak over a j must have



(a) Payoff matrix for a two host, two vulnerability game with both
hosts connected to v1 initially. The intrinsic cost of choosing a vul-
nerability, c0 (not shown), is common in all cases. c2 is the additional
cost of sharing a vulnerability and cw is the additional switching cost.

(b) A graph of n hosts, m << n vulnerabilities with all hosts con-
nected to vc initially. Cost of switching is cw, while cost of choosing
a vulnerability vi is c0Π(deg(vi)) where Π(x) is the scalability factor
defined in Section 4.

Figure 4: Anti coordination games with switching costs

Π(no
ak
) ≤ Π(no

a j
). By monotonicity of Π(x) we have

no
a j
= no

ak
, i.e., all vi 6= vc will have equal preference.

If j = c and k 6= c, we get Π(no
ac) ≤ Π(no

ak
)+ cw/c0,

and symmetrically, for j 6= c and k = c we get Π(no
ac)≥

Π(no
ak
)+ cw/c0.

Therefore, if nc hosts continue to choose vc and (m−
1)ns hosts make a switch from vc to vi 6= vc, then, observ-
ing that nc +(m−1)ns = n, we have

Π(ns) = Π(n− (m−1)ns)− cw/c0 (4)

We, of course, do not know what the scalability factor
Π(x) is, but if we did know that and cw/c0, we could
calculate how many hosts would choose to stay with vc
and how many would shift to other vulnerabilities using
Equation 4. More interestingly, in the other direction,
if we had a series of values for n, m, ns and cw/c0, we
could try to estimate Π(x). In the next section we pro-
pose a modification to the popular Internet security game
Capture the Flag that will make it possible to collect this
kind of data in the real world.

5 Capture the Diversity

Diversity is a very broad concept and although one can
make several assumptions and perform analysis, it is of-
ten hard to obtain data for corroboration. In the real
world, choices people make about software aren’t solely
dictated by security. Hence we turn to popular secu-
rity competitions like Capture the Flag where the incen-
tives are primarily to secure one’s system, keep services
running and attack other systems [2]. Typically a team
is provided with m, e.g 10, vulnerable services. Game
server preiodically checks every host for running ser-
vices which yield points for the host. If an attacker cre-
ates an exploit for a vulnerability in a service, periodic

attacks are launched on hosts running that service to cap-
ture its flag and report it to the game server for points.

The crucial point is that participants don’t get to
choose which services to run—they have to keep all m
services running. In the real world, however, if a ser-
vice is easily exploited, one gets to replace it with an
alternative. To model this we propose that 2m services
be available to the participant but only one from each of
m categories of services needs to be kept running simul-
taneously. Everyone gets to see the host-service graph
(available from the game server) and choose which of
the two alternative services to run, e.g postfix or exim;
mysql or postgresql and so on.

This simple modification will yield very interest-
ing data. First, it will show the evolution of host-
vulnerability graph and entropy Ha with time. Second,
we get to see the strategies employed by top teams that
defend and attack well. Third, it is entirely possible
that some teams might score high points primarily by
strategically switching one service for the other based
on the gameplay. This last point is the essence of this
paper: choice matters. Although finding and fixing bugs
is important, as the security and hacking community are
well aware, choosing which software to run given ample
choice is non-trivial and highly relevant to security.

6 Conclusion

In this paper we define software diversity in terms of
the Renyi entropy based on a bipartite graph of hosts
and vulnerabilities. We show how this measure can be
used to quantify diversity in actual software ecosystems,
and how it can be used to define games, both formal and
playable, that capture attacker/defender dynamics in the
context of diversity.

We believe that the framework we present for formal-



izing diversity can serve as a guide for developing fu-
ture defenses. In particular, our models suggest that we
need to significantly reduce the overlap of vulnerabilities
between hosts if diversity is to be an effective defense
strategy. We postulate that to achieve such dispersion
of vulnerabilities, we would need the software on each
computer system to be unique in behavior, if not in com-
position. Achieving this level of software diversity in a
way that is practical from both a usability and cost per-
spective is, we believe, an important goal for future re-
search.

It is possible that currently existing security technolo-
gies, such as anomaly-based intrusion detection, may al-
ready be diversity-type defenses as characterized by our
definition. Our hope is this work will inspire others to
analyze proposed and deployed defenses in terms of our
diversity framework.

Acknowledgements

The authors would like to thank Jeremy Clark, Philip
Fong, and Payman Mohassal for comments and feed-
back on aspects of this work. This work was supported
by Canada’s Natural Sciences and Engineering Council
(NSERC), through their Discovery program (Somayaji,
Locasto) and the ISSNet Strategic Network (Somayaji,
Neti).

References

[1] A. Avizienis. The n-version approach to fault-
tolerant software. IEEE Transactions on Software
Engineering, 11(12):1491–1501, 1985.

[2] C. Cowan, S. Arnold, S. Beattie, C. Wright, and
J. Viega. Defcon capture the flag: Defending vul-
nerable code from intense attack. In In DARPA DIS-
CEX III Conference, Washington DC, pages 22–24.
IEEE Computer Society Press, 2003.

[3] David and Andow. The extent of monoculture and
its effects on insect pest populations with particular
reference to wheat and cotton. Agriculture, Ecosys-
tems & Environment, 9(1):25 – 35, 1983.

[4] S. Forrest, A. Somayaji, and D. Ackley. Building
Diverse Computer Systems. In Proceedings of the
6th Workshop on Hot Topics in Operating Systems,
pages 67–72, 1997.

[5] D. E. Geer. Monopoly Considered Harmful.
IEEE Security & Privacy, 1(6):14 & 17, Novem-
ber/December 2003.

[6] T. Grenager, R. Powers, and Y. Shoham. Disper-
sion games: General definitions and some specific
learning results. In In AAAI 2002, pages 398–403.
AAAI Press, 2002.

[7] M. O. Hill. Diversity and evenness: a unifying no-
tation and its consequences. Ecology, 54(2):427–
432, 1973.

[8] G. S. Kc, A. D. Keromytis, and V. Prevelakis.
Countering code-injection attacks with instruction-
set randomization. In Proceedings of the 10th ACM
conference on Computer and communications se-
curity, CCS ’03, pages 272–280, New York, NY,
USA, 2003. ACM.

[9] NetApplications. Net market share.
http://netmarketshare.com [Last accessed: 26
April 2012].

[10] NIST. National vulnerability database.
http://nvd.nist.gov/ [Last accessed: 26 April
2012].

[11] A. J. O’Donnell and H. Sethu. On achieving soft-
ware diversity for improved network security using
distributed coloring algorithms. In Proceedings of
the 11th ACM conference on Computer and com-
munications security, CCS ’04, pages 121–131,
New York, NY, USA, 2004. ACM.

[12] H. Shacham, E. jin Goh, N. Modadugu, B. Pfaff,
and D. Boneh. On the effectiveness of address-
space randomization. In CCS 2004: Proceedings of
the 11th ACM Conference on Computer and Com-
munications Security, pages 298–307. ACM Press,
2004.

[13] S. Sidiroglou and A. Keromytis. Countering net-
work worms through automatic patch generation.
Security Privacy, IEEE, 3(6):41 – 49, nov.-dec.
2005.

[14] M. Stamp. Risks of Monoculture. Communications
of the ACM, 47(3):120, March 2004.

[15] M. van Dijk, A. Juels, A. Oprea, and R. L. Rivest.
Flipit: The game of ”stealthy takeover”. Cryptol-
ogy ePrint Archive, Report 2012/103, 2012. http:
//eprint.iacr.org/.

[16] K. Wang, G. Cretu, and S. Stolfo. Anomalous
payload-based worm detection and signature gen-
eration. In A. Valdes and D. Zamboni, edi-
tors, Recent Advances in Intrusion Detection, vol-
ume 3858 of Lecture Notes in Computer Science,
pages 227–246. Springer Berlin / Heidelberg, 2006.
10.1007/11663812 12.

[17] P. yu Chen, G. Kataria, and R. Krishnan.
Software diversity for information security.
http://www.infosecon.net/workshop/pdf/47.pdf.

[18] Y. Zhang, H. Vin, L. Alvisi, W. Lee, and S. K.
Dao. Heterogeneous networking: a new survivabil-
ity paradigm. In Proceedings of the 2001 workshop
on New security paradigms, NSPW ’01, pages 33–
39, New York, NY, USA, 2001. ACM.


