
NetADHICT: A Tool for
Understanding Network Traffic

Hajime Inoue – ATC-NY, Ithaca, NY
Dana Jansens, Abdulrahman Hijazi, and Anil Somayaji – Carleton University, Ottawa, Canada

ABSTRACT

Computer and network administrators are often confused or uncertain about the behavior of
their networks. Traditional analysis using IP ports, addresses, and protocols are insufficient to un-
derstand modern computer networks. Here we describe NetADHICT, a tool for better under-
standing the behavior of network traffic. The key innovation of NetADHICT is that it can identify
and present a hierarchical decomposition of traffic that is based upon the learned structure of both
packet headers and payloads. In particular, it decomposes traffic without the use of protocol dissec-
tors or other application-specific knowledge. Through an AJAX-based web interface, NetADHICT
allows administrators to see the high-level structure of network traffic, monitor how traffic within
that structure changes over time, and analyze the significance of those changes. NetADHICT al-
lows administrators to observe global patterns of behavior and then focus on the specific packets
associated with that behavior, acting as a bridge from higher level tools to the lower level ones.
From experiments we believe that NetADHICT can assist in the identification of flash crowds,
rapidly propagating worms, and P2P applications.

Introduction

Network administrators are regularly confounded
by the behavior of the networks they manage. Part of
this confusion is a function of the rapid innovation in
applications and protocols; it also arises from simple
human unpredictability. Much of the blame for the
mystery of computer networks, though, can be laid at
the feet of our tools: we simply do not have the means
for truly understanding what is happening in our net-
works [11].

To be sure, we have numerous tools for monitor-
ing networks. Packet volume monitors can alert admin-
istrators to gross changes in network behavior. Flow re-
construction and protocol dissectors can reveal the be-
havior of individual connections. Signature scanners
can identify specific security problems, and anomaly
detectors can tell us that something is ‘‘different.’’ As
we discuss in the Related Work section, these tools,
while useful, are not sufficient for us to achieve net-
work awareness.

One key piece that is missing is a way to view
traffic at the ‘‘right’’ level of abstraction. For example,
when dealing with a surge in web traffic, we need more
detail than ‘‘80% of your traffic is HTTP’’; however,
analyzing the patterns in 50,000 HTTP connections is
sure to induce information overload. In order to address
this shortcoming, we need tools that can automatically
extract multiple human-comprehendable abstractions of
network behavior (e.g., most of connections have slash-
dot in the HTTP referrer field). By understanding the
structure of the observed abstractions and by seeing
how future traffic fits into them, an administrator can
quickly come to understand how network behavior

changes at a level of granularity that facilitates both
holistic understanding and appropriate response.

We have developed a tool called NetADHICT
(pronounced ‘‘net-addict’’) for extracting and visualiz-
ing context-dependent abstractions of network behav-
ior. NetADHICT hierarchically decomposes network
traffic: for example, observed packets are first divided
into IP and non-IP groups, IP packets are then split into
TCP and non-TCP, and so on. What is notable about
NetADHICT, though, is that its decomposition is auto-
matically derived from observed traffic; in other words,
it learns an appropriate context-dependent hierarchical
classification scheme automatically with no built-in
knowledge of packet or protocol structure.

NetADHICT is able to perform this feat through
the use of a novel clustering method we refer to as ‘‘Ap-
proximate Divisive Hierarchical Clustering (ADHIC).’’
When applied to traces of captured traffic, NetADHICT
generates hierarchical clusters that closely correspond to
the kind of semantically meaningful abstractions that
are normally used to describe network behavior [10].
Remarkably, NetADHICT often aggregates packets
without the use of ports or IP addresses; it also groups
packets across multiple flows when there is significant
commonality.

Although we have not attempted to optimize
NetADHICT, it is designed to be extremely efficient,
allowing use of the tool at wire speed. We have bench-
marked NetADHICT at 245 Mb/s. NetADHICT can
achieve this speed because it classifies packets using
sets of fixed-length strings located at fixed offsets with-
in packets. We refer to these patterns as (p, n)- grams.

Of course, fancy algorithms are not enough to
make a useful tool for observing networks; we also

21st Large Installation System Administration Conference (LISA ’07) 39

NetADHICT: A Tool for Understanding Network Traffic Inoue, Jansens, Hijazi, & Somayaji

need appropriate interfaces for visualizing and inter-
acting with observed traffic. To that end, this paper de-
scribes NetADHICT from the point of view of a net-
work administrator. Specifically, we explain how Net-
ADHICT’s interactive AJAX-based web interface can
be used to understand network behavior in a new, and
we believe highly useful, way – one that gives insights
into the sub-protocol behavior of networks in a way
that preserves user privacy. Even though NetADHICT
is still evolving, it has already proved to be a valuable
tool for understanding networks. NetADHICT is made
available under the GNU GPL license [13]; we hope
that this paper will encourage others to get involved in
the evolution of NetADHICT.

The rest of this paper proceeds as follows. The
next section explains related work in tools and meth-
ods for understanding network traffic. We then give a
detailed rationale for the use of hierarchical clustering
to analyze networks and subsequently describe the
ADHIC clustering algorithm. The interface and imple-
mentation of NetADHICT are described in the next
section which is followed by a narrative on how one
uses the tool in conjunction with other tools to allow
administrators to better understand their networks. We
then discuss limitations of NetADHICT and plans for
future work before concluding by describing how to
obtain our tool and a summary of our work.

Related Work

Fundamentally, the problem of understanding net-
work behavior is one of data reduction: we must trans-
form gigabytes of network traffic into a small number
of concepts and details that can be understood and act-
ed upon by human administrators. As there are many
different ways in which we can choose to understand
network behavior, there is correspondingly a variety of
tools that are designed to answer different questions.

Network and systems administrators have a vari-
ety of mature tools to select from for counting packets
and flows. From open source solutions such as MRTG
[16] and FlowScan [19] to large commercial offerings
such as HP Openview [17] and IBM Tivoli [12], tools
are readily available for visualizing the packet and
flow statistics records that can be exported by many
routers. Such solutions allow an administrator to deter-
mine bandwidth consumption on a host, network, or
port basis. For well-behaved applications that use
standard ports, such views can be useful for identify-
ing deployed applications; as most peer-to-peer proto-
cols and other multimedia protocols do not use stan-
dard ports or masquerade as HTTP (port 80) traffic,
more sophisticated tools are needed to identify the
most bandwidth-hungry applications.

The most common strategy for monitoring eva-
sive applications at the network layer is to combine
flow reconstruction with deep packet inspection and
application-specific identification rules (signatures).
Tools such as Wireshark (formerly Ethereal) [3] are

designed to perform such analysis on captured packet
traces. Commercial network forensics tools [4] facili-
tate ongoing traffic capture so that recent behavior can
be queried on demand to provide packet, flow, appli-
cation, and even user-level views of traffic. In con-
trast, other commercial products such as those pro-
duced by Sandvine [22] can analyze packets at wire
speeds, primarily to enable per-application traffic sha-
ping. What these systems have in common is that they
rely upon elaborate sets of rules in order to identify,
dissect, and even change application behavior. While
such rules are generally crafted by hand, there has
been extensive research in identifying applications and
usage patterns using a variety of machine learning
techniques [2, 14, 6].

Network administrators, however, are interested in
more than monitoring what applications are running;
they also need to know when human intruders or mal-
ware have compromised the security of their systems.
Intrusion detection systems are most commonly built
upon elaborate rule databases that specify the signatures
associated with known attacks [21] or specifications of
what network activity is and is not allowed [18]. One
fundamental problem for all such systems, though, is
that disruptive network activity often is caused not by
attackers but by highly popular legitimate applications
or services (e.g., flash crowds). Either the rules have to
be broad enough to not signal alarms in some disruptive
conditions, or administrators have to tolerate a regular
stream of false alarms.

Anomaly detection systems have the potential to
adjust rules to local conditions through the use of ma-
chine learning mechanisms; behavior at the network
layer, however, is highly dynamic, and in fact attempt-
ed attacks are now routine on the Internet. For these
reasons, some researchers are coming to believe that
anomaly detection at the network layer is a question-
able strategy for detecting security incidents [9]; such
reasoning, however, does not exclude the use of anom-
aly detection for detecting networking problems in
general [1].

While these various techniques for monitoring
and classifying network behavior have their place,
there is also a need for tools that can uncover other as-
pects of the structure of network traffic. The next sec-
tion explores what is missing in currently available
tools.

Understanding Network Traffic

To understand network behavior we need to ob-
serve more than changes in packet volume or security
status. In addition, we need to discern patterns in traf-
fic that allow us to group related communication ac-
tivities together. While we cannot hope to find all pos-
sible patterns, there are a number of ways to capture
simple patterns in network traffic. The general strategy
for grouping packets together using automatically

40 21st Large Installation System Administration Conference (LISA ’07)

Inoue, Jansens, Hijazi, & Somayaji NetADHICT: A Tool for Understanding Network Traffic

learned patterns (or features) is to employ a clustering-
based machine learning algorithm.

Figure 1: An ADHIC cluster decision tree after 3 node splits. The labelling of the internal nodes and the pie charts
of the terminal nodes are explained in the ‘‘NetADHICT’’ section.

One strategy for clustering packets is to learn pat-
terns associated with sets of flows. For example, Auto-
Focus [7] is a system that hierarchically clusters pack-
ets using IP address and port information so that tempo-
ral patterns in the activities of groups of hosts can be in-
ferred. However, there are many interesting patterns
which cannot be defined in terms of protocol and ad-
dress. Ma, et al. [14] addressed this limitation by build-
ing classifiers from network flows using the header and
first 64 bytes of payload from the initial packet in each
flow. Their classifiers were built using clusterers. Clus-
terers don’t label data, they simply group it together.
Once a clusterer was constructed, the packets in each
cluster were examined and assigned to a particular pro-
tocol, turning the clusterer into a classifier. Although,
Ma’s approach is promising, it is not fast enough to be
used to monitor networks online. In fact, most general
clustering and classification algorithms are simply too
slow to learn at wire speed. This limitation is significant
because we want to observe changes in behavior as they
happen so that we may react to changes in a timely fash-
ion.

NetADHICT differentiates itself from other traf-
fic clustering tools in that NetADHICT clusters traffic
without knowing in advance any details about the
packets’ structure and does so in a way that can exe-
cute at the speed of the network. This allows it to find

its own differences between the packets – differences
that adapt automatically to the traffic as it changes.
Traffic volume patterns can be watched online and
compared between the differentiated clusters. These
traffic groups are presented visually through a tree:
Packets that are found to be internally dissimilar are
clustered separately, so that users immediately observe
that they are different in nature. Also, each cluster’s
position in the tree contains a wealth of context about
how the traffic for that cluster is similar and different
from the rest of the network’s traffic. Volume of traffic
through each cluster is displayed in the tree in near re-
al-time, allowing administrators to analyze traffic pat-
terns as they emerge.

High level tools can often show that something is
wrong. Low level tools give tremendous detail, but of-
ten are too slow or too information-rich to be used
Clustering is a form of filtering that allows one to fo-
cus on relevant behavior. NetADHICT allows the inte-
gration of high and low level tools while providing
enough information to allow administrators to move
smoothly from high to low.

The NetADHICT interface is designed to facili-
tate such multi-level exploration. It is built around the
cluster tree approach to network volume visualization.
Each cluster of traffic within the tree is identified by a
traditional classifier and colored appropriately. (The
traditional classifier is built around EtherType, IP pro-
tocol, and IP port.) This coloring of the clusters, along

21st Large Installation System Administration Conference (LISA ’07) 41

NetADHICT: A Tool for Understanding Network Traffic Inoue, Jansens, Hijazi, & Somayaji

with their position in the tree, highlights traffic that is
contextually different but using the same ports. It pro-
vides an excellent starting point for delving further in-
to different classes of traffic in the network and high-
lights classes that would have remained completely
hidden otherwise. In this fashion NetADHICT is a tool
for enhancing network awareness.

Figure 2: NetADHICT’s primary tree view, showing traffic over a four hour period.

Hierarchical Clustering with (p,n)-grams

NetADHICT is centered around a novel cluster-
ing algorithm that recursively splits the set of ob-
served packets into smaller and smaller groups. We
call our algorithm Approximate Divisive HIerarchical
Clustering (ADHIC), the root of NETwork ADHIC
Tool (NetADHICT). This algorithm is classified as a
type of machine learning algorithm broadly known as
divisive hierarchical clustering [5], but ours is sub-
stantially different than other general purpose or net-
work specific clustering algorithms. We give an over-
view of ADHIC below; for more details, please see
Hijazi [10].

The feature we use to split groups of packets is
called a (p, n)-gram. (p, n)-grams are used to denote
substrings at fixed offsets within packets. The p is the
offset and n is the length of the substring. For exam-
ple, the (p, n)-gram (8, 0xdc3b) denotes the 2 byte
hexadecimal substring 0xdc3b 8 bytes into the packet

(these are the middle bytes of the source MAC address
in the Ethernet frame).

Divisive hierarchical clusterers form decision trees.
The tree is constructed using the split and merge oper-
ations. When the average bandwidth of a terminal
cluster (leaf) exceeds a configurable threshold over a
certain time window, the cluster is split into two clus-
ters. The existing node becomes an internal decision
node and two new terminal clusters are formed. A
(p, n)-gram is found by examining the packet cache, a
buffer that stores a few percent of recently received
packets. (p, n)-gram frequencies are calculated for
packets assigned to the terminal cluster in question,
and a (p, n)-gram is chosen which matches roughly
half of them. Conversely, if a node averages less than
a set bandwidth limit, it is deleted and its parent be-
comes a leaf node. Newly created nodes cannot be
merged for a certain number of minutes, called the
maturation period, to prevent transient behavior from
affecting tree structure.

Through these two operators, ADHIC generates
a decision tree that specifies the contents of clusters.
The path from the root of the tree to a leaf or other
internal cluster specifies the boolean equation of
(p, n)-grams which determine if a packet belongs to
that cluster.

42 21st Large Installation System Administration Conference (LISA ’07)

Inoue, Jansens, Hijazi, & Somayaji NetADHICT: A Tool for Understanding Network Traffic

Consider, for example, the tree in Figure 1. The
root node has a (p, n)-gram of (1, 0x0393) and its child
(p, n)-grams (9 0x70ad) and (0, 0x0100). All the offsets
point to locations within the MAC addresses of the Eth-
ernet frame. The offsets 0 and 1 segregate portions of
the destination MAC address and 9 distinguishes be-
tween source MAC addresses. The left edge signifies
that the packet has matched the (p, n)-gram in the parent
node. The right edge is followed for packets that do not
contain that (p, n)-gram. Please note the labeling of the
nodes and the pie charts is not a part of the ADHIC al-
gorithm; it is a visualization produced by NetADHICT
and is explained in the ‘‘NetADHICT’’ section.

The decision trees produced by the ADHIC algo-
rithm have a number of strengths as representations of
network structure. They are simple in structure and se-
mantics, facilitating user understanding and analysis.
Trees can be frozen, or subtrees removed from the
learning algorithm, allowing users to directly modify
the tree. Subtrees can be incrementally modified and
augmented by users in a straightforward way. Addi-
tional information and statistics may be easily added
to decision trees. Finally, the ADHIC representation
also easily lends itself to implementations like the de-
cision tree packet classification algorithms often used
as alternatives to TCAM [23].

NetADHICT

NetADHICT’s user interface is an interactive
AJAX-based web page (Figure 2). The primary ele-
ment of this interface is the tree view, which allows
the network administrator to quickly see how traffic is
being distributed between clusters and what traffic
each cluster represents. The tree view can update itself
with newly available data as it becomes available, al-
lowing network administrators to watch changes in the
traffic’s structure as they occur.

Traffic is shown in the tree view for a selected
time period, as shown in Figure 3. The time period is
normally selected relative to the present time; it can be
set to always show the latest data available or just data
that was available in the past. Alternatively, a time pe-
riod can be specified directly for any time at which
there is traffic data available.

In the tree view, internal nodes represent a (p, n)-
gram operation which is displayed within each node,
such as (6, 0x0001). By tracing a node’s ancestors up
the tree, you can see which (p, n)-grams are or are not
present in the node’s traffic.

Te r m i n a l clusters show traffic volumes for the se-
lected time period, as well as much more information
through their size and coloring. The size of each termi-
nal cluster represents the volume of traffic relative to all
other terminal clusters in the tree. The sizes make it
easy to see where traffic is distributed within the tree
from a high level, or within a subtree at a lower level.

The coloring of each terminal cluster represents
the basic packet types of its traffic and the traffic’s

labels. Basic packet types include IP, TCP, UDP, and
other non-IP traffic. For each cluster, the outer ring’s
color shows what percentage of traffic for that cluster,
for the specified time period, consisted of IP packets.
For IP traffic, an inner ring shows what percentage of
the traffic was TCP, UDP, or other IP packets. In Figure
4, TCP traffic dominated but approximately 6% of the
traffic assigned to the cluster was UDP packets and an-
other 5% was non-IP packets (ARP in this case).

Figure 3: Selecting a time range for which Net-
ADHICT will display a tree and traffic statistics.

Figure 4: A single cluster in NetADHICT, containing
a large number of traffic types.

Labels are used to name and group the semantic
classes of traffic for a cluster. NetADHICT provides
initial labels and colors with a simple traffic classifica-
tion by EtherType, IP protocol, and IP port, but a user-
defined label can be applied to each classification
when a more precise semantic class is determined by
the network administrator. The labels for each termi-
nal cluster are represented through the pie charts with-
in the rings. Each color represents a different label and
their size represents the percentage of traffic for that
cluster which belonged to the given label.

Labels are created, modified, and deleted by the
network administrator within the NetADHICT inter-
face. By clicking on the ‘‘Edit labels’’ link in the top
right corner, the label editing interface (Figure 5) is
displayed. From here the system administrator can

21st Large Installation System Administration Conference (LISA ’07) 43

NetADHICT: A Tool for Understanding Network Traffic Inoue, Jansens, Hijazi, & Somayaji

create new labels, remove old ones, or change the
names and colors of existing labels.

Figure 5: Editing the list of user-defined labels.

Figure 6: Details of a node in the tree.

Detailed information for any node in the tree, in-
ternal nodes and terminal clusters alike, can be dis-
played by hovering the mouse over the node (Figure
5). The details include the precise volumes of traffic
which the node and all nodes below it represent. They
also show what traffic classification or label each col-
or in the node’s pie chart represents, what percentage
of the node’s traffic fell into each label, and let you
change the labels for the node’s traffic.

For more detailed analysis, the traffic represent-
ed by any cluster can be exported by NetADHICT into
packet dump files. These dumps can then be analyzed

using standard network analysis tools such as Wire-
shark. Any number of clusters can be selected for a
packet capture by shift-clicking on them. While select-
ed for capturing, all packets that match the clusters
will be captured to pcap files; these files can be down-
loaded at any time during the capture.

The NetADHICT backend packet analyzer and
frontend web interface both require access to a MySQL
database. The frontend is a Ruby on Rails application
and so requires a web server configured with support
for such applications. A web browser is used to view
the NetADHICT interface.

NetADHICT’s trees are rendered using standard
SVG and JavaScript; however, because many current
browsers have poor support for JavaScript-generated
SVG, the quality of NetADHICT’s interface varies
greatly depending upon the web browser used. In fact,
at the time of this writing the Firefox 3 alpha release
(also known as Gran Paradiso [8]) is the only truly ca-
pable browser for running NetADHICT. Firefox 2 is
functional but too slow for real use. Internet Explorer
7 and Konqueror 3 lack the SVG support required, and
the latest Opera release (version 9.23) contains critical
bugs in regard to its SVG support that prevent Net-
ADHICT from functioning. While this variable perfor-
mance is currently problematic, better SVG support is
on the short-term development roadmap for most brow-
sers; thus, we believe the browser compatibility issue
will soon cease to be a significant problem for Net-
ADHICT.

Usage Scenarios

We now move from describing the tool itself to
how a network administrator would use the tool in
several common situations. These situations are:

1) checking normal network traffic,
2) analyzing a flash crowd,
3) recognizing special network usages or activities

such as local P2P traffic, and
4) identifying and isolating a propagating worm.

In earlier papers [10, 15], we described several
experiments which we used to evaluate the ADHIC al-
gorithm. The following descriptions are not of actual
experiments, but we draw upon our research experi-
ence to describe how one could use the tool in a small
network context. While we believe these usage scenar-
ios should generalize to larger networks, further test-
ing is required.
Checking Normal Network Traffic

The first usage scenario is network surveillance
under normal conditions. The network administrator
begins a session by examining the current tree, as in
Figure 2. An administrator knows what a normal-con-
dition tree and flow values (the size of the pie charts)
look like and can immediately spot anomalous behav-
ior. If he sees unusual behavior in some part of the tree
he can magnify the subtree and examine its volume
pie charts to see what is wrong.

44 21st Large Installation System Administration Conference (LISA ’07)

Inoue, Jansens, Hijazi, & Somayaji NetADHICT: A Tool for Understanding Network Traffic

Alternatively, he can view the tree for specific
past time periods. By viewing the series of trees from
the immediate past he can see how the tree developed
to its current form. We have found this ‘‘movie’’ to be
very useful in understanding network behavior. It is
analogous to animated radar maps – but instead it
shows network weather.

As we will discuss in the other usage scenarios,
anomalous traffic flows will lead to easily identifiable
changes in the tree structure or the volume pie charts.
However, if the tree visualization is not enough to
identify the problem he can hover the cursor over a
node to see the statistical network traffic volume sum-
mary as in Figure 6.

An administrator has another option if he needs
more information than the two visualizations provide.
He can shift-click on any number of clusters to request
that NetADHICT record all future packets assigned to
those clusters. These packets can then be downloaded
as a pcap file into a tool like WireShark [3]. This al-
lows the administrator to use any analysis tool he likes
that reads pcap files while first using NetADHICT to
eliminate the vast majority of uninteresting traffic.
Analyzing a Flash Crowd

Now let us consider what might happen if a par-
ticular page on a website was hit by a flash crowd, or
‘‘slashdotted.’’ A traditional network tool would no-
tify the administrator that total traffic volume is up,
when the surge occurred, and would probably identify,
using port numbers, that HTTP is the culprit. The ad-
ministrator might then turn to the web server logs for
further information.

Like a traditional tool, NetADHICT would show
that traffic is up, that it is HTTP, and when the surge in
traffic started and if and when it ended. NetADHICT’s
other behavior would differ based on how long the flash
crowd remains. If it is much shorter than the matura-
tion period, then the flash crowd would be contained
in the terminal nodes. These would likely be dominat-
ed by HTTP and the administrator would have to refer
to the web server’s logs for more information. If the
flash crowd remained longer than the maturation peri-
od, though, NetADHICT would begin segregating
traffic, searching for commonalities in the packets of
the flash crowd.

If the flash crowd were from a particular network
with a common prefix, NetADHICT might recognize
it by specifying the address in the created (p, n)-grams.
Or, it might find (p, n)-grams that matched other parts
of the header or even payload contents such as the re-
quested URL. The key thing to remember is that Net-
ADHICT will keep refining its classification of in-
coming packets so long as certain nodes continue to
receive more than their ‘‘fair share’’ of packets, and so
long as there exists (p, n)-grams that match a signifi-
cant fraction of a high traffic node’s packets.

The resulting cluster equations (encoded in the
structure of the tree) would give the administrator

more information than the traditional tools before he
dove into the web logs. Further, because NetADHICT
can provide exemplars of the ‘‘new’’ packets, a net-
work administrator would have a significant head start
in determining the precise characteristics and origin of
the flash crowd.

Identifying P2P Traffic

Peer-to-peer (P2P) traffic is in some ways similar
to flash crowds. The differences lie in that many P2P
protocols are not well documented and many actively try
to evade traditional traffic classification. For example,
many BitTorrent clients now provide the option to en-
crypt their data so that payload inspection cannot identify
the protocol [20]. In addition to encrypting its payload,
BitTorrent does not use standard ports. Because of
this, traditional tools often either cannot classify or mis-
classify P2P traffic that use these evasion tactics.

NetADHICT does not need to know about proto-
col structure, so it can be more useful than traditional
tools in such situations. In our evaluation experiments
[10] we found that ADHIC, when confronted with
(unencrypted) BitTorrent as a new protocol, segregat-
ed the traffic into just two terminal clusters. These
clusters corresponded to the UDP tracker packets and
the TCP content packets. Thus, we believe that a net-
work administrator, when investigating a new high
network volume application, would see one or a few
nodes with increased traffic. If the P2P session lasted
several maturation periods, NetADHICT would begin
splitting those nodes, building a P2P dominated sub-
tree. Other than the port-based color labeling, Net-
ADHICT cannot classify traffic, but it could provide a
pcap file of P2P traffic with all other traffic filtered out
for the administrator to investigate.

NetADHICT application-level classifications are
more robust than those produced by traditional port-
classifying tools. For example, suppose that a P2P
client uses port 80 for its traffic. Traditional tools would
likely mis-classify the new application traffic as HTTP.
In experiments we have found that NetADHICT, be-
cause it often ignores ports, continues to cluster P2P
traffic correctly even when clients use misleading ports
[10].

Identifying Worm Traffic

Finally, let us consider the case of a propagating
worm. Worms are a subcase of the flash crowd be-
cause they involve a large increase in traffic over pro-
tocols that are already used. The benefits of Net-
ADHICT are similar to those during a ‘‘slashdotting.’’
If a particular set of addresses is responsible, Net-
ADHICT may allow the administrator to discover it
by knowing the (p, n)-gram offsets. Similarly, Net-
ADHICT might also create new clusters specific to
worm traffic. Inspection of the (p, n)-gram equation
might allow the administrator to construct a signature
for the worm, which could then be applied to a fire-
wall or an intrusion prevention system. Even if the

21st Large Installation System Administration Conference (LISA ’07) 45

NetADHICT: A Tool for Understanding Network Traffic Inoue, Jansens, Hijazi, & Somayaji

(p, n)-gram equations could not be used for this pur-
pose, the pcap file NetADHICT provides would be
useful in signature construction.

We believe NetADHICT would be useful in many
additional scenarios. These, however, hopefully provide
a useful introduction in how the tool could be used.
NetADHICT, as a complement to existing tools and
systems, can allow an administrator to quickly ascer-
tain the state of his network and investigate any
anomalous behavior as it occurs.

Discussion

While our experience with NetADHICT has con-
vinced us that it is a useful tool for network adminis-
trators, we have also experienced its limitations. First
and foremost is ADHIC’s inability to classify packets.
ADHIC is a clustering algorithm that does not rely on
prior knowledge to segregate traffic into clusters –
therefore the clusters may not always have the seman-
tic splits that administrators may prefer. ADHIC’s use
of (p, n)-grams also is a source of problems. Some in-
teresting semantic splits do not lend themselves to us-
ing (p, n)-grams. The reason for this is that some iden-
tifiers are not at constant offsets from the beginning of
the packet. These weaknesses are mitigated by Net-
ADHICT’s incorporation of a traditional classifier, its
ability to work with other network analysis tools using
pcap files, and the administrator’s ability to label the
cluster tree.

The extent to which these inherent limitations
will affect NetADHICT’s usefulness is not clear. To
this point we have not investigated NetADHICT’s be-
havior beyond our own laboratory’s network. We have
determined that NetADHICT can often segregate en-
crypted and multimedia traffic, by only using their
packet headers. If traffic moves to more evasive strate-
gies such as overloading common protocol ports, play-
ing with the other header fields, and using encrypted
payloads, NetADHICT may be less able to discover
patterns in network traffic.

Evaluation of NetADHICT is difficult because it
uses full packet payloads. Using full payloads intro-
duces privacy concerns. This has not been an issue for
our internal lab, but we could not investigate Net-
ADHICT’s behavior on other, larger, networks be-
cause of our inability to correlate the generated trees
with the raw pcap traces.

Our limited ability to evaluate NetADHICT has
helped motivate us to release this tool. We can ad-
vance our research and improve it with more adminis-
trators testing NetADHICT on their own networks.

The tool continues to improve, even without an
external user base. We are improving the integrated
traditional classifier. In addition, we would like to give
users the ability to control the tree through manipulat-
ing or locking nodes as it grows. This may improve
an administrator ’s ability to find, label, and track

semantic classes of traffic. We are also investigating
different user interfaces and visualizations of the data.

Finally, we are working on moving the cluster
and sampling portions of NetADHICT into the Linux
kernel. This would greatly improve efficiency and in-
crease throughput. Also, the kernel implementation al-
lows us to schedule or filter at a per cluster level, al-
lowing us to use NetADHICT to actively manage net-
work traffic to improve resource allocation and miti-
gate malicious activity [15]. We see such extensions as
a fruitful area for future research.

Availability

NetADHICT is licensed under the GNU General
Public Licence (GPL), version 2 or greater. It is avail-
able for download at the CCSL software website at
http://www.ccsl.carleton.ca/software .

Conclusion

NetADHICT shows great promise in aiding ad-
ministrators in understanding network behavior. It pro-
vides a new way to separate traffic that is normal from
‘‘interesting’’ traffic that an administrator is interested
in analyzing. With new ways to visualize traffic and
providing a network ‘‘weather ’’ map, NetADHICT al-
lows administrators to see the status of their whole
network at a glance, while also providing ways to in-
vestigate smaller flows of traffic. While development
and testing are ongoing, by acting as a bridge from
higher level analysis tools to low level ones, Net-
ADHICT has the potential to improve how administra-
tors manage network resources.

Acknowledgments

This work was supported by the Discovery grant
program of Canada’s National Sciences and Engineer-
ing Research Council (NSERC) and MITACS.

About the Authors

Hajime Inoue is a Principal Scientist at ATC-NY
in Ithaca, NY. He was previously a Postdoctoral Fel-
low at the Carleton Computer Security Laboratory. He
recieved a B.S. in biophysics from the University of
Michigan in 1997 and a Ph.D. in Computer Science
from the University of New Mexico in 2005. He can
be reached at hinoue@ccsl.carleton.ca .

Dana Jansens is currently studying towards a
B.C.S. at Carleton University specializing in networks
and operating systems and works as a research assis-
tant in the Carleton Computer Security Lab. In her
spare time, she leads the Openbox window manager
project and studies social justice issues. You can reach
her at dana@ccsl.carleton.ca .

Abdulrahman Hijazi graduated with his masters
degree in CS at Johns Hopkins University in 2003
with highest honors. He previously had seven years of
work experience as a system analyst/programmer. He

46 21st Large Installation System Administration Conference (LISA ’07)

Inoue, Jansens, Hijazi, & Somayaji NetADHICT: A Tool for Understanding Network Traffic

is currently pursuing his Ph.D. in computer science at
Carleton University. You can reach him at ahijazi@
ccsl.carleton.ca .

Anil Somayji is an assistant professor in the
School of Computer Science at Carleton University
and is associate director of the Carleton Computer Se-
curity Laboratory. His research interests include com-
puter security, operating systems, complex adaptive
systems, and artificial life. He received a B.S. in
Mathematics from the Massachusetts Institute of Tech-
nology in 1994 and a Ph.D. in Computer Science from
the University of New Mexico in 2002. He can be
reached at soma@ccsl.carleton.ca .

Bibliography

[1] Barford, Paul, Jeffery Kline, David Plonka, and
Amos Ron, ‘‘A Signal Analysis of Network Traf-
fic Anomalies,’’ IMW ’02: Proceedings of the
2nd ACM SIGCOMM Workshop on Internet mea-
surment, pp. 71-82, ACM Press, New York, NY,
USA, 2002.

[2] Bernaille, Laurent, Renata Teixeira, Ismael Akod-
kenou, Augustin Soule, and Kave Salamatian,
‘‘Traffic Classification on the Fly,’’ SIGCOMM
Comput. Commun. Rev., Vol. 36, Num. 2, pp.
23-26, 2006.

[3] Combs, Gerald, et al., Wireshark, 2007, http://
www.wireshark.org .

[4] Corey, V., C. Peterman, S. Shearin, M. S. Green-
berg, and J. Van Bokkelen, ‘‘Network Forensics
Analysis,’’ IEEE Internet Computing, Vol. 6, Num.
6, pp. 60-66, Nov/Dec, 2002.

[5] Duda, R. O., P. E. Hart, and D. G. Stork, ‘‘Pattern
Classification,’’ Unsupervised Learning and Clus-
tering, pp. 517-599, Wiley, Second Edition, 2001.

[6] Erman, J., A. Mahanti, and M. Arlitt, ‘‘Traffic
Classification Using Clustering Algorithms,’’ Pro-
ceedings of the ACM SIGCOMM Workshop on
Mining Network Data (MineNet), 2006.

[7] Estan, C., S. Savage, and G. Varghese, ‘‘Auto-
matically Inferring Patterns of Resource Con-
sumption in Network Traffic,’’ Proceedings of
ACM SIGCOMM, 2003.

[8] Mozilla Foundation, Firefox 3 alpha: Gran para-
diso, http://www.mozilla.org/projects/granparadiso/ .

[9] Gates, Carrie, and Carol Taylor, ‘‘Challenging the
Anomaly Detection Paradigm: A Provocative Dis-
cussion,’’ Proceedings of the 2006 Workshop on
New Security Paradigms, ACM Press, 2006.

[10] Hijazi, Abdulrahman, Hajime Inoue, Ashraf Ma-
trawy, P. C. van Oorschot, and Anil Somayaji,
‘‘ Towards Understanding Network Traffic Through
Whole Packet Analysis,’’ Technical Report TR-
07-06, School of Computer Science, Carleton
University, 2007.

[11] Hughes, Evan, and Anil Somayaji, ‘‘Towards Net-
work Awareness,’’ Proceedings of the 19th Large

Installation System Administration Conference
(LISA ’05), pp. 113-124, USENIX Association,
2005.

[12] IBM, Tivoli software, http://www-306.ibm.com/
software/tivoli .

[13] Jansens, Dana, Hajime Inoue, and Abdulrahman
Hijazi, Netadhict, http://www.ccsl.carleton.ca/
software .

[14] Ma, J., K. Levchenko, C. Kreibich, S. Savage, and
G. M. Voelker, ‘‘Unexpected Means of Protocol
Inference,’’ Proceedings of ACM Internet Mea-
surements Conference, 2006.

[15] Matrawy, A., P. C. van Oorschot, and A. Som-
ayaji, ‘‘Mitigating Network Denial-of-Service
Through Diversity-Based Traffic Management,’’
Applied Cryptography and Network Security
(ACNS’05), pp. 104-121, Springer Science+Busi-
ness Media, 2005.

[16] Oetiker, Tobias, ‘‘Mrtg – The Multi Router Traf-
fic Grapher,’’ Proceedings of the 12th Systems
Administration Conference (LISA ’98), USENIX
Association, 1998.

[17] Hewlett Packard, Management Software: HP Open-
view for Large Business, http://h20229.www2.hp.
com .

[18] Paxson, Vern, ‘‘Bro: A System for Detecting Net-
work Intruders in Real-Time,’’ Proceedings of the
7th USENIX Security Symposium, USENIX Asso-
ciation, 1998.

[19] Plonka, Dave, ‘‘Flowscan: A Network Traffic
Flow Reporting and Visualization Tool,’’ Pro-
ceedings of the 14th Systems Administration Con-
ference (LISA ’00), pp. 305-317, USENIX Asso-
ciation, 2000.

[20] Azureus Project, http://azureus.sourceforge.net/ .
[21] Roesch, Martin, Snort – Lightweight Intrusion

Detection for Networks, Proceedings of LISA ’99:
13th Systems Administration Conference, pp. 229-
238, USENIX Association, 1999.

[22] Sandvine, Inc., Sandvine: Intelligent Broadband
Networks, 2007, http://www.sandvine.com .

[23] Taylor, David E., ‘‘Survey and Taxonomy of
Packet Classification Techniques,’’ ACM Com-
puting Surveys, Vol. 37, Num. 3, pp. 238-275,
2005.

21st Large Installation System Administration Conference (LISA ’07) 47

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

