COMP 3000A: Operating Systems

Carleton University
Fall 2022 Final Exam Solutions

December 21, 2022

There are 28 questions on 4 pages worth a total of 72 points. Answer all questions in the supplied
text file template (available on Brightspace, titled comp3000-final-template.txt). Please do not
corrupt the template as we will use scripts to divide up questions amongst graders. Your uploaded file
should be titled comp3000-final-username.txt, replacing username with your MyCarletonOne
username. Make sure you submit a UNIX text file and not another format (such as MS Word or PDF).
Use a code editor, not a word processor! (You won’t be graded for spelling or grammar, just try to make it
clear.)

This test is open book. You may use your notes, course materials, the course textbook, and other online
resources. If you use any outside sources during the exam, you must cite the sources. Your citation may
be informal but should be unambiguous and specific (i.e., if you refered to the textbook, indicate what
chapter and page you looked at rather than just citing the textbook). You may not collaborate with any
others on this exam. This exam should represent your own work.

Do not share this exam or discuss it with others who have not taken it. Some students will be
taking it at other times due to accommodations. Solutions will be released once everyone has finished th
exam.

All explanations should be concise and to the point (generally no more than a few sentences, sometimes
much less). If you find a question is ambiguous, explain your interpretation and answer the question
accordingly.

You have 150 minutes. Good luck!

1. [2] In what circumstances would you expect the signal handler in 3000shell2.c to be called? Would
you expect this to happen often?
A: The signal handler will be called when 3000shell2 receives SIGHUP or SIGCHLD signals,
because those are the signals signal handler() has been registered for in main() (through calls
to sigaction). We’d expect to get SIGHUP very rarely (say, when an ssh connection was termi-
nated unexpectedly or a user sent the signal deliberately). SIGCHLD could be received every
time a child process terminates, so it could happen for every external command run. As most
commands will be run in the foreground, the call to wait in run_program() will take care of get-
ting the return value of child processes, meaning the kernel doesn’t need to send a SIGCHLD
to the process; however, the signal handler will definitely have to handle the SIGCHLD gener-
ated by every backgound process. (1 point for identifying receiving SIGCHLD and SIGHUP, 1
point for reasonable explanations of when a process would get these signals. -0.5 if no mention
of SIGHUP.)

2. [2] If you strace processes on the class VM, do you generally expect to see fork system calls? Why
or why not?
A: You don’t expect to see fork system calls because the C library on the class VM makes clone
system calls for fork library calls. (1 for not seeing them, 1 for explanation)

3. [2] What determines the available internal commands for a shell? What about the available external
commands?



A: The availability of internal commands depends on the code of the shell itself, as the shell
implements internal commands. External command availability depends on the programns
installed in the directories in the current PATH, as any available executable file can be an
external command. (1 for internal, 1 for external)

. [5] For each of the following questions, answer unshare, chroot, both, or neither: (For each,
0.5 for correct unshare classification, 0.5 for correct chroot classification.)

(a) [1] Can change how file paths are interpreted
A: both

(b) [1] Can cange the PID’s associated with processes
A: unshare

(c) [1] Creates persistent files
A: neither

(d) [1] Can change how UID’s are interpreted
A: unshare

(e) [1] execve’s a new executable
A: both

. [1] When doing a call to fork (), how does the parent get the PID of the child process?
A: The return value of fork, if it is greater than zero, is the PID of the child process.

. [2] Is there a potential risk in running sudo busybox —--install on the class VM? Why or
why not? Assume you are running it in the normal student account just after login.

A: This command creates hard links to the busybox binary in standard executable directories
using the name of many common programs. If you didn’t want to replace the standard ver-
sions with busybox’s versions you could have a significant change/loss in system functionality.
However, busybox checks for the existence of those files, so it only create links for programs
that don’t currently exist on the system. So this could be dangerous but in practice it isn’t. (1
point for explaining what this command does, 1 point for either explaining how this could be
bad or for noting it is pretty safe in practice. No points off if student didn’t know busybox is
smart about adding links.)

. [8] Assume you run the following commands, and that the system’s root filesystem is on the device
/dev/sda2 (which is where the current directory is stored):

dd if=/dev/zero of=myimage bs=8192 count=60000
mkfs.ext4 myimage

mkdir mp

mount myimage mp

dd if=/dev/urandom of=filel bs=8192 count=2

cd mp

dd if=/dev/urandom of=file2 bs=8192 count=2

(a) [1] Could any of the above commands cause loss of data? Assume that nothing exists in the
current directory with the name “myimage” and “mp”. (Yes or No)
A: No



(b) [1] How many write system calls were needed to create filel?
A:2
(c) [2] Which of the above commands require root privileges? Why?

A: mount requires root privileges, because it changes the filesystems that are accessible
and the system’s directory structure.

(d) [2] What filesystem is filel stored in? What about file2? Why?
A: filel is stored in the root filesystem stored in /dev/sda2, because it was made in the
top-level directory. file2 is in the myimage filesystem because it is mounted in the mp
directory.

(e) [2] Did the creation of filel increase the amount of data stored in /dev/sda2? What about file2?
Explain briefly.
A: The creation of both filel and file2 increased the amount of data stored in /dev/sda2
because filel is stored in the root filesystem stored in /dev/sda2, and file2 increases the
space used in the myimage filesystem and that filesystem’s image is stored in the root
filesystem which is stored on /dev/sda2.

8. [2] Answer the following questions about x86-64 assembly language:

(a) [1] What instruction is used to call a function?
A: call

(b) [1] What instruction is used to make a system call?
A: syscall

9. [1] It is a common convention to follow a call to execve () with a message output to standard
error. What is the purpose of such a message?
A: If execve succeeds, the current program is replaced with that in the file given to execve. So
if the statement after the execve runs at all, it means the execve has failed—so this is a natural
place to output an error because an error indeed has happened (the execve failed).

10. [4] Assume a process opens a file X for writing, does an Iseek that moves forward 1 MiB (2%°) bytes,
does a write of 1024 null bytes, and then closes X. Answer the following questions. (Note: you may
answer with expressions, you don’t have to calculate the values.)

(a) [1] How many bytes can be read from X?
A: 220 1+ 1024, or 1049600 bytes

(b) [1] How many data blocks does the file use on disk? Assume each data block can hold 4096
bytes.
A: one data block
(c) [1] For this file, which is larger, its logical or physical size?
A: logical
(d) [1] Does X have a “hole”? Yes or no.
A: yes!

While you should have been able to figure out the answers based on your knowledge of Iseek
and file holes, you could have written a test program such as this:



#include
#include
#include
#include
#include
#include

int main

{

11. [2] In the confined environment, nano needs files from /lib/terminfo to function properly. bash,
however, can function properly without these files. Why does nano need them and bash does not?
A: nano needs them because it operates in full-screen mode, i.e., it needs to position text at
arbitrary positions in the terminal. In order to do this, it needs to know how to control the
terminal, particularly where text is drawn on the screen. This is precisely what files in the
terminfo directory document. bash just outputs text without regard to screen position, thus it
can work on any terminal without requiring special information or having any special control.
(1 for recognizing nano works in full screen and bash doesn’t, and 1 for understanding that

<unistd.h>
<sys/types.h>
<sys/stat.h>
<fcntl.h>
<stdio.h>
<string.h>

0)
int f£d;
int shift;

char buf[1024];

fd = open("testfile", O_WRONLY|O_CREAT,
shift = 1 << 20;

printf ("Seeking %d\n", shift);
lseek (fd, shift, SEEK _CUR);

memset (buf, 0, 1024);

write (fd, buf, 1024);
close (fd);

return O;

terminfo gives info on how to control terminals)

0444) ;

12. [4] Assume that your account is in the shadow group but has no extra privileges.

(a) [2] Can your account validate passwords without having extra privileges? Why?
A: Yes, because you can read /etc/shadow which has the password hashes for each ac-

count. /etc/shadow can be read by processes in the shadow group

(b) [2] Can your account delete another user account? Why?

A: No, because members of the shadow group cannot modify /etc/shadow or /etc/passwd,
and they certainly can’t delete a directory in /home, because those all require root privi-

leges.

13. [2] Is it safe to give full access to system devices in a confined environment? Why or why not?

4



14.

15.

16.

17.

18.

19.

A: It is not safe, because then they can get access to critical devices such as the one holding the
root filesystem (and thus will be able to mount it and modify any file on the system!

[4] Which of the following C functions/macros can be used from within a kernel module? Answer
yes or no for each.

(a) printf
A: no

(b) snprintf
A: yes

(c) put_user
A: yes

(d) getpid
A: no

[2] After the ¢3000procreport module is loaded, does its code run continuously until it is unloaded?
Why or why not?

A: No, its code only runs in response to registered events because modules add code to the
kernel but they don’t create a new execution context (normally). Its functions only get called
when the /dev/procreport is accessed; otherwise, its code isn’t running.

[2] In the kernel source, current is a pointer to the task that made the system call that the kernel
is currently handling. Does this pointer contain a virtual or a physical address? Explain briefly.

A: Virtual address, because except for low-level memory management all pointers in the ker-
nel are virtual because otherwise kernel code would have to deal with its code being spread out
in page-sized chunks throughout the physical address space, or it would greatly make mem-
ory management more complicated because kernel memory would all have to be allocated
contiguously.

[3] Can a bpftrace script be used to do which of the following? Answer yes or no for each.

(a) Monitor calls to puts () made by 3000shell2.c
A: yes

(b) Monitor calls to procreport_read () in ¢c3000procreport.c
A: yes

(c) Monitor write system calls made by 3000shell2.c
A: yes

[2] When /dev/procreport is closed, what function in ¢3000procreport.c is called? How can you
confirm this?

A: procreport_release() is called when /dev/procreport is closed, we can verify this by either
adding a printk statement to put a message in the kernel log or we can observe the output of
watch_procreport.bt while a program opens, pauses, and then closes /dev/procreport.

[2] What special steps must a kernel module take before writing data to a userspace pointer? What
happens in the class VM if you don’t take these steps?

A: The kernel must make sure to use the special macros/functions to access userspace such as
put_user(). If it doesn’t do this the memory operation will be detected as being not allowed
and will generate a kernel oops log message.

5



20.

21.

22.

23.

24.

[2] What is one function we can use to dynamically allocate memory in a kernel module? Why can’t
we justuse malloc () ?

A: get_free_page() is one that we’ve seen, there are many others for allocating memory in the
kernel. We can’t just use malloc() because it depends on system calls such as mmap and sbrk,
and the kernel is what implement system calls so it cannot make them in order to implement
its own functionality.

[2] What process’s parent is always itself? Is this process special in any other way?

A: PID 1, the init process, is its own parent. It is special because it is the first process that runs
when the system boots and when it terminates the system shuts down. Also, it becomes the
parent of any process that loses its original parent.

[2] Does the hardware running the class VM have three, four, or five level page tables? How do you
know?

A: It has four level page tables because while the Linux kernel assumes a five level page table,
when we look at the lookups in procreport_get physical() pgd and p4d are identical. We can
also know this because you only need 5 level page tables to handle more than 256 TiB of RAM,
and the SCS servers definitely don’t have more than that!

[2] What is a C statement or declaration that could have generated the following assembly language
code? Explain how each line is accounted for in your C code.

.LCO:

.string "alpha"
.LC1:

.string "beta"
.LC2:

.string "gamma"
animals:

.quad .LCO

.quad .LC1

.quad 0

.quad .LC2

A:char *animals[] = {"alpha", "beta", NULL, "gamma"} The firstsix linesare

declaring the constant strings. “animals’ labels the start of an array of four 64-bit values. All
of these are pointers to the constant strings previously declared except for the third which is
just a zero or NULL value.

[4] Consider the following x86-64 assembly code and C code.
Assembly code:

mov]l the_number ($rip), %eax
cmpl %$edi, %eax

jg .L6

jge .L4

leag .LC1 (%rip), %rdi

call puts@PLT

movl $-1, %eax



25.

26.

C code:
#include <stdio.h>
int the_number = 42;

int check_guess (int qg)
{
if (g < the_number) {
puts ("Higher!\n");
return 1;
} else if (g > the_number) {
puts ("Lower!\n");
return -1;
} else {
puts ("Got it!\n");
return 0;

(a) [2] What part of the C code does this assembly code implement? Be specific.
A: This code implements the core of the if statement, comparing g with the number. The
cmpl compares the two values, and the jg jumps to the code that implements the higher
portion, the jge jumps to the got it branch code, and the rest of the code implements the
lower portion, outputting the Lower! string and returning -1 (well, putting that value in
the eax register to be returned).

(b) [2] Could the compiler have replaced the reference to the_number with the number 42?7 Why
or why not?
A: No, because other parts of the program could modify the_number.

[2] How could you execve /bin/1s, giving it the command line argument of “-1 /home”? Assume
that you can use environ for the environment. Be sure to specify the exact arguments you would
give to execve, defining any necessary data structures using C code.

A: For argyv, you just need to define a suitable array of pointers to character arrays, with the
last entry being NULL. You then give it as the second argument to execve. Code follows:

char xmyargv([] = {"1s", "-1", "/home", NULL};
execve ("/bin/1ls", myargv, environ);

[2] How could you make a program “‘setuid student”? What privileges would such a program have
that it otherwise wouldn’t?

A: You make a program setuid student the same as you make it setuid root: you change its
ownership to student with chown and then set the setuid bit on it (chmod u+s). Such a program
would have access to student’s files and could send signals to student’s processes even if it was
run by another non-privileged user. (So if you made a game that other users could run, if you
made it setuid your user, you could have a high score file that other users couldn’t update but
your game could.)



27.

28.

[2] If 3000shell2 is setuid root, does it ever give up its root privileges? If so, when? If not, what are
the security implications of this?

A: 3000shell2 gives up its root privileges just before running any external command unless the
become command is used, specifically lines 188 and 189 in run_program() which sets the child
process’s effective gid and uid to the real ones, thus dropping root privileges.

[2] In bash, if I type “1s > logfile”, what program closes 1ogfile, bash or Is? Why?

A: Is closes the logfile because it is the one actually writing to the file. The file is initially opened
by bash but then is handed off as Is’s standard output; it can thus do whatever it wishes to with
it and when it is done or it terminates, the file is closed.



