
Name: Student ID #:

Lab #5 Solutions: COMP 3000B (Operating Systems)
February 7th & 9th, 2006

1. (2 pts) From a graphical terminal (e.g. gnome-terminal), use the “ssh desktopX” command
to log in to another machine in the lab, where desktopX is the name of another machine in
the lab. Is the DISPLAY environment variable set? Can you run graphical programs (such
as gnome-system-monitor) from that remote machine and have it display locally?

Ans. By running “echo $DISPLAY” or the “env” command, it should have been
clear that the DISPLAY environment variable was not set. As a result, it wasn’t
possible to run remote graphical programs, they would terminate with a “can’t
open display” error.

2. (2 pts) Run “ssh -X desktopX xclock”, where desktopX again is the name of another ma-
chine in the lab. Which machine’s clock is xclock checking—the local clock, or that of the
remote machine? Explain.

Ans. By adding the -X flag to the ssh command, the DISPLAY environment vari-
able is set to a valid value, allowing remote X applications to be run and dis-
played locally. (SSH actually routes all graphical requests from the remote system
through the encrypted connection, allowing remote applications to be executed
securely.)

Thus, the command as given will run xclock on the remote host. Because the
xterm process is running on the remote host, the clock value it shows will be that
of the remote host (i.e. the time displayed will be from the kernel on the remote
host). (Note that you can test this fact by examining the list of active processes
on the local and remote hosts.)

3. (2 pts) Run the command “xterm”. Then, inspect the list of currently running processes
using the command “ps axo pid,uid,gid,cmd”. What group is xterm running as, and what
group are your other processes running as? (You can convert the numeric IDs to text using
the file /etc/group.) Why are they different? Explain.

Ans. xterm should have been running as group utmp (#43), while (most) other
student processes should have been running as group student (#1000). These
groups are different because the xterm binary has the set group ID (setgid) bit set
in its permissions; thus, when xterm is run via the execve system call, the kernel
will give the process the effective group ID of the binary (in this case, 43); without
the setuid/setgid mechanism, the effective group ID of all processes started by
the user student is equal to the student account’s default group ID of student (gid
1000).

The setuid and setgid mechanisms are to allow users to invoke programs that
have more privileges than they do. Thus, an xterm process invoked by the stu-
dent user can change the contents of the file /var/run/utmp even though the
student user normally cannot modify this file.

(Side note: the file /var/run/utmp stores a record of who is currently logged
into the system. This file is consulted by commands such as “who” and “w”.)

4. (4 pts) Create five terminal windows. In three of them, run the command “worms”. In the
fourth, run top. In the fifth, use the command “renice” to change the priority of the worms
processes. Close down any other running programs that you have started.

Do the three worm processes execute at the same time when they run at full priority?
What happens when you lower their priority to 20? (Be sure to lower them one at a time.)
How is CPU time being divided between running processes? Experiment and explain your
findings.

Ans. This question was designed to show how priorities can affect CPU time
allocation. On some systems, the worms will all appear to execute roughly at the
same time; on others, the worms will take turns filling a terminal with characters.
By lowing the priority of different worm processes, though, their relative speeds
will change (with lower priority worms executing more slowly). When all the
worms have the same (lowered) priority again, they will again also execute at
roughly the same speed. The relative speed of the worms programs indicates the
fraction of CPU time that each is receiving.

To truly understand what was happening, it is important to note a few things.
First, text I/O is buffered—in fact, there is effectively a bounded-buffer pro-
ducer/consumer relationship between the terminal program (gnome-terminal or
xterm) and the worms program. Also, the rate of I/O for the terminal is con-
trolled by the producer/consumer relationship between the terminal program
and the X display server (XFree86). Thus, the actual patterns observed depend
upon the relative rate of execution of all of these programs, and on how the ker-
nel decides to dynamically divide CPU time between these I/O-bound processes.
Because the video cards, CPUs, RAM, and motherboards are different in the dif-
ferent machines in the lab, the concurrent worms programs do not execute in the
same manner on every machine.

2

