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Abstract

Online email archives are an under-protected yet ex-
tremely sensitive information resource. Email archives can
store years worth of personal and business email in an
easy-to-access form, one that is much easier to compromise
than messages being transmitted “on the wire.” Most email
archives, however, are protected by reusable passwords that
are often weak and can be easily compromised. To protect
such archives, we propose a novel user-specific design for
an anomaly-based email archive intrusion detection system.
As a first step towards building such a system, we have de-
veloped a simple probabilistic model of user email behav-
ior that correlates email senders and a user’s disposition
of emails. In tests using data gathered from three months
of observed user behavior and synthetic models of attacker
behavior, this model exhibits a low rate of false positives
(generally one false alarm every few weeks) while still de-
tecting most attacks. These results suggest that anomaly
detection is a feasible strategy for securing email archives,
one that does not require changes in user authentication or
access behavior.

1 Introduction

Email is one of the cornerstone applications of the In-
ternet, one that millions use on a daily basis. Email, un-
fortunately, is also an extremely insecure medium for com-
munications. Messages lack authentication, confidentiality,
and integrity guarantees while servers are extremely vulner-
able to denial-of-service attacks. The spam epidemic has
spread in part due to these shortcomings; in practice, how-
ever, email continues to provides “sufficient” security guar-
antees in that a high enough percentage of legitimate emails
reach their intended destinations intact, and confidential in-
formation contained in those messages is not often used for
malicious purposes.

The spread of reliable network connectivity and the de-
clining cost of storage, though, have together changed the

way that email is managed, and in so doing have changed
the nature of threats facing a user’s inbox. Before, email
was typically downloaded from a mail server to a work-
group server or local disk. Now, however, email is more
often being archived on servers that are accessible from the
open Internet either via a web interface or through an on-
line mail access protocol such as IMAP [6]. Through these
servers, users can access both new and archived email from
potentially any networked computer in the world. The price
for this convenience, unfortunately, is that anyone else in
the world may also access this same resource. By stor-
ing hundreds of megabytes of filtered, prioritized, and or-
ganized email, remotely-accessible email servers provide a
means for an adversary, whether a business rival, criminal,
or jealous lover, to learn about a target with minimal effort
or risk. Most such parties do not have the technical skill or
access to compromise emails while in transit; almost every-
one, though, is capable of accessing an Internet-connected
email archive.

Despite the increased exposure users now have with
large, remotely accessible email archives, the authentication
technology used to protect such resources is still extremely
weak. While there exist many technologies that could be
used to authenticate email users in a more secure fashion,
virtually all of them would require significant changes in
how users access their email. For now, we appear to be
stuck with the same standard that has existed since the be-
ginning of the Internet: reusable text passwords. Even when
systems do not transmit passwords in cleartext (which they
often do, even today), passwords may be compromised by
malicious software, social engineering, or by simple user
negligence.

To address this challenge, in our research we have fo-
cused on how to better protect email repositories even when
account passwords have been compromised. One way
to achieve this goal is through intrusion detection system
(IDS) technology. Unlike many other IDSs, however, an
email archive IDS must defend against attackers who do not
exploit software vulnerabilities; instead, they will be using
normal access protocols to retrieve unauthorized informa-



tion. This is the “insider threat” problem, one that was an
early focus of intrusion detection research. Like systems
such as NIDES [1], we propose to detect intrusions by de-
tecting unusual uses of valid authentication credentials by
maintaining statistical profiles of individual user behavior.
We propose, however, that an email archive IDS should be
user specific, in that it should be controlled by the profiled
user herself, not by a systems administrator or security of-
ficer. Individual users would receive alarms and adjust pa-
rameters, giving them control over their level of security.
So long as the data acquisition and analysis requirements
of such a system are sufficiently small, such an architecture
could potentially scale up to the largest email sites—even
with a fixed per-user rate of false positives.

As a first step towards such an email archive IDS, we
have developed and tested a simple statistical model of user
email behavior based upon the relationship between the dis-
position of new email messages and the senders of those
emails. By limiting the scope of our model to this sim-
ple relationship, we have managed to create a model that is
both surprisingly accurate and efficient to create. In testing
over several months, we have found that after training for
approximately one month, our system can distinguish be-
tween variations in user behavior over the next two months
and simulated attacker behavior with a low rate of false
positives—as low as one alarm per month, but generally not
higher than one per week.

While our testing involves only a few users, and is thus
far from comprehensive, we believe that our results provide
sufficient evidence that our chosen modeling strategy is a
viable one. Perhaps more importantly, it also demonstrates
the feasibility of online anomaly intrusion detection through
(suitably constrained) observable user behavior. Having
said that, we do not believe that one simple model, no mat-
ter how good, will be able to accurately capture the patterns
of behavior for all users. By developing multiple simple
models and allowing the system to choose the most suitable
one based upon its accuracy, it should be possible to accu-
rately model the behavior of almost all users of email, and
in so doing protect their archives from attack.

The rest of this paper proceeds as follows. We first dis-
cuss related work in Section 2. We then discuss the motiva-
tion and requirements of an email archive IDS in Section 3.
We explain our choice of observable and modeling strategy
in Section 4. Experimental setup and results are discussed
in Section 5. The paper ends in Section 6 with a discussion
of limitations, implications, and plans for future work.

2 Related Work

Electronic mail, or email, is a communications medium
that, by the definition of its underlying protocol SMTP [12],
offers almost no security guarantees. Numerous techni-

cal mechanisms have been proposed and developed in re-
sponse to these limitations. Some, such as PGP [27] and
S/MIME [18], use cryptography to provide a complete so-
lution for end-to-end integrity, confidentiality, and authen-
ticity. Most commonly-used email security enhancements,
however, are more narrowly focused on the problem of un-
solicited email, or spam. Some spam solutions prevent the
use of forged email senders [7, 26]; others block known
sources of spam through frequently updated lists of offend-
ing DNS names and IP address ranges [23]. In the end,
though, many ISPs and email users resort to content-based
spam filtering systems [2]. Similar content-based scan-
ning is also used to detect and stop email viruses, either
on servers or client systems. While such approaches help
maintain the security of individual messages (and prevent
the relaying of unwanted or dangerous ones), they do not
secure messages once they have been delivered to a user’s
inbox.

The problem of email archive security has normally been
subsumed within the general host protection problem. In
that vein, both “server” and “client” protection systems have
been built. For servers, we have buffer overflow mitigation
systems [5], network [19] and host [21] intrusion detection
systems, file integrity checkers [11], firewalls, and other
protections. Client systems often employ many of these
same mechanisms, but they are generally coupled with tools
that prevent compromise by viruses and spyware. Whether
focused on monitoring patterns in network traffic, process
behavior, or file contents, though, such systems are pri-
marily designed to prevent malicious or compromised soft-
ware from circumventing access control policies—not pre-
vent the use of compromised authentication credentials.

Unfortunately, the most commonly used authentication
credentials, reusable passwords, are extremely vulnerable
due to common patterns of user behavior. Many users
choose simple passwords that are easy to remember; many
such passwords, however, can be compromised by online
and offline dictionary attacks. Users enter passwords on
untrusted machines that may be infected with viruses, spy-
ware, or other malicious software. Such malware can be
used to capture passwords. Also, users often share pass-
words across domains and applications, allowing one weak
application (e.g. one that sends passwords in the clear) to
result in the compromise other, more secure systems. Ad-
ditionally, users often reveal passwords to friends, family
members, and co-workers—sometimes inadvertently, but
sometimes to facilitate the sharing of information or re-
sources. Those very same “insiders,” however, often have
motive for compromising a user’s privacy.

Protection against insider attacks—attacks from sources
that have access to valid authentication credentials—is dif-
ficult to achieve using most commonly-used security tech-
nologies. Because insider attacks consist of “authorized”



accesses and manipulations of data, access control mecha-
nisms are not sufficient to prevent them. It is extremely dif-
ficult to make an a-priori specification that would exclude
all insider attacks while allowing legitimate accesses; sim-
ilarly, insider attacks are difficult to characterize with fixed
signatures.

Because of these fundamental difficulties, most insider-
focused IDSs are based on some form of anomaly detec-
tion. For example, NIDES [1] monitored host audit records
to detect anomalous user accounts. There has also been
work on detecting insider attacks using anomalous typing
patterns [3] and unusual patterns of UNIX shell commands
[8, 20, 17, 15, 13]. In order to catch insider attacks, these
systems build models of individual user behavior. Although
they can detect a wide variety of compromises, many of
these systems have been marked by high rates of false pos-
itives. In large part, these problems are not so much at-
tributable to the failure of the systems themselves but rather
to the inherent variability of human behavior. Other work
in anomaly intrusion detection have avoided these prob-
lems by modeling program behavior [22] or network traf-
fic [9, 10, 25]. While such systems often have lower false
alarm rates, they are not nearly as adept at detecting insider
attacks.

While (to our knowledge) there has been no work specif-
ically on protecting email archives from attack, the problem
is most analogous to that of misuse of database information
by insiders. Existing proposals such as DEMIDS [4] build
profiles of how individual users access a given database.
While email archives have similarities to other databases,
the fact that the stored information belongs to exactly one
user makes the problem much more tractable. Further, the
regular, well-known structure of email archives enables a
simplified, specialized approach that should be feasible in
practice. The fundamental challenge to developing such a
system lies in determining what data to capture and how
that data should be represented. The next section explains
our approach.

3 Protecting Email Archives

To protect against the exploitation of email archives
through disclosure of passwords, we propose that email
archives be protected using a user-specific email archive
intrusion detection system. Unlike host or network IDSs
that are designed to protect one or more computers, we be-
lieve that an email archive IDS should be designed to pro-
tect one resource: a user’s email repository. Logically, an
email archive server then would actually be running multi-
ple IDSs, with one instance per user. This design choice is
largely motivated by the extremely personal nature of email;
it also, however, has significant impact on our overall sys-
tem architecture, modeling strategy, and the potential scal-

ability of the system.
More specifically, we have framed our work on this prob-

lem with the following threat model. First, we assume that
the attacker has access to a user’s entire hardware and soft-
ware environment: either the attacker uses the same plat-
form, e.g. Microsoft Outlook running on Windows XP, or
the attacker can access the user’s machine itself. We also
assume that the attacker has by some means obtained the
user’s password. Most of the data the attacker wishes to
access, however, does not reside on the client machine; in-
stead, it is stored on a remote server that is running a remote
email archive access protocol such as IMAP or a web email
interface1. Other than the targeted user’s authentication cre-
dentials, the attacker has no other access to the server (i.e.
no administrative/root access). The attacker wishes to com-
promise the archive in arbitrary ways that violate confiden-
tiality (reading old and new emails) and/or integrity (delet-
ing, modifying, or inserting emails). Our goal as defender,
then, is to detect the attackers actions before they do signif-
icant damage.

To protect a user’s email archive given these constraints,
we would like an intrusion detection system that can de-
tect the behavior of an attacker relative to that of a le-
gitimate user. Legitimate users, however, are not all the
same—being human, each will have her own patterns of
archive access. Patterns that are legitimate for one user will
be completely anomalous for another, e.g. one user might
archive all organizational announcement emails, while an-
other deletes them all immediately. Because the difference
between legitimate and illegitimate behavior in this context
is fundamentally ambiguous and related individual user be-
havior, we have chosen to approach this intrusion detection
problem from the perspective of user behavior modeling.

Most production and research IDSs, however, do not fo-
cus on user behavior for a simple reason: false positives
(false alarms). Human behavior inevitably changes over
time, even using the most consistent observables. Eventu-
ally this “drift” manifests as a significant change in behav-
ior (i.e. an alarm) unless the system takes steps to adjust to
novel user behavior. Any such adjustments, however, must
be very conservative, otherwise an attacker could simply
“train” the system to accept her behavior as normal. The
consequence of such conservatism is a persistent level of
false positives in any user-specific anomaly intrusion detec-
tion system.

Clever choices of data sources, representations, and
modeling algorithms can reduce the rate of false positives;
the presence of false positives, however, inherently limits
the scalability of any intrusion detection system. For ex-

1While POP [16] has some similarities to IMAP, it is primarily designed
for downloading messages from an email server, not for managing a remote
email archive. Because of this difference, we do not address POP further
in this paper.



ample, a system that would only produce one false alarm
per week for 50 users would, without modification, pro-
duce around 14 alarms per day for 5000 users. Inherent
in the design of any IDS, then, are assumptions about the
size of the observed population relative to that of the mon-
itors (system administrators or security officers). Because
existing user-based anomaly IDSs tended to have higher
rates of false positives than other IDS technologies, their de-
ployments have traditionally been limited to environments
where large numbers of security officers are available such
as secret government agencies and military organizations.

If we make the entire system user specific (not just the
models), then we have a ratio of one user to one monitor-
ing party. With this change, user modeling becomes inher-
ently more feasible because we can tolerate a higher rate
of false positives; further, because a user understands his
own behavior, he is the best equipped to determine whether
or not a given alarm reflects a genuine security violation.
This choice also puts the party with the most at stake—the
user—in a position to make appropriate trade-offs regarding
their level of protection vs. the amount of work required for
monitoring the IDS.

We have found, though, that it is difficult for a simple
model of user behavior to apply equally accurately to all
users (see Section 5). While we cannot be certain that all
simple models have this limitation, the inherent variability
of human behavior suggests that this will be the case. To
overcome this problem, a production email archive IDS sys-
tem would need to incorporate multiple models of potential
user behavior, with some of these models based upon dif-
ferent sets of observables. The system would then decide
which model(s) to use to capture normal behavior during
the system’s initial training period. Thus, the model pro-
posed in Section 4 should not be seen as applying to all
users, but merely as a proof-of-concept model that applies
to a reasonable fraction of potential users.

Because an email archive IDS would interact directly
with the protected user, it needs a secure path of commu-
nications with that user; however, by assumption the pro-
tected user’s password(s) may be compromised, so we can-
not create such a trusted path by using a password. While
this might seem like a fatal flaw, in practice there are many
potential solutions. For example, the IDS could use an al-
ternate communication channel to transmit alarms such as
instant messaging, mobile phone text messaging, or an al-
ternative email account. (In this context, the IDS in effect
filters side-channel messages to reduce user fatigue.) An-
other, potentially simpler alternative would be a clear alert
in the mail reading client/web browser that cannot be re-
moved by the user; instead, it would persist on-screen for a
fixed period of time (e.g. a few days or a week). The most
appropriate design for such a system would depend upon
the deployed system and the security requirements of the

specific users; what is important is that attackers should not
be able to stop alarm messages, while false alarms should
not create too much of a burden on the protected user.

Of course, before we can consider the feasibility of
building an email archive IDS, we first need to determine
whether user behavior within this domain is consistent
enough to form the basis of an anomaly-based IDS. To ad-
dress this question, we need at least one candidate method
for modeling user behavior. The next section, Section 4,
explains our chosen modeling approach in detail, and Sec-
tion 5 presents the results of offline experiments that test the
performance of our model.

4 Modeling User Email Behavior

In this section we explain our approach to modeling
email archive access behavior. Section 4.1 explains the in-
tuitions that underly our model design. Section 4.2 presents
the features used by our behavioral model. Section 4.3 de-
scribes the model itself. To evaluate this model, we need
attacker behavior data in addition to normal user behavior;
Section 4.4 explains our approach to modeling attackers for
testing purposes.

4.1 Intuition

To design an anomaly-based email archive IDS, we first
need to decide what to observe about email archive ac-
cess behavior and how to model those observations. We
have many possible observables, such as the time of day
of archive accesses, the amount of data transferred, and the
program used to access the archive. Rather than look at such
incidental features, we have chosen to focus on the pattern
of email disposition, i.e. whether an individual user chooses
to read an email, delete it, forward it, etc. Because there
are only a small set of possibilities for email disposition,
this restriction greatly simplifies the task of modeling user
behavior. At the same time, though, these operations repre-
sent the fundamentals of user decisions regarding email.

In this context, we note that there is a fundamental dif-
ference between how users approach newly arrived email
and already received email. User accesses to old email are
dictated by the specific semantics of individual messages
and the tasks the user is engaged in; new emails, however,
are frequently read, deleted, or responded to soon after they
have arrived. Because of this observation, we have chosen
to build our model of user behavior using only the disposi-
tion of newly arrived emails.

The other key observation we have is that there is a
naturally high correlation between the sender of an email
message and its final disposition. Some email originating
from an announcement email list might be read and deleted;
email from an important colleague, though, would typically



be responded to and/or archived. Our model of user behav-
ior, thus, correlates new email disposition with the sender
of individual messages.

To test our model, we need to understand how an attacker
might choose to mask her behavior. If an attacker is famil-
iar with the habits of an individual, it might be possible for
her to disguise her attack by imitating the targeted user’s
archive access behaviors. The problem for the attacker,
though, is that typical message disposition actions change
the state of the archive: email messages are moved, deleted,
or are marked as being read. If an attacker attempts to do
exactly the same operations as those of the normal user, be-
cause email accounts are normally not shared, the user her-
self will notice the unauthorized changes (messages marked
as read that have never been seen by the user, mysteriously
moved messaged, etc.). An attacker thus must both conceal
her actions from the IDS and from the targeted user. This
dilemma greatly simplifies the design of an email archive
IDS system; we explore this idea further in Section 4.4 and
Section 5.2.

4.2 Feature Extraction

There are a number of user disposition operations related
with new email messages. Rather than build a model that
incorporates all of these possibilities, we have instead cho-
sen to focus on the following common operations: reading,
deleting, copying, moving, marking a message as being un-
read (setting the unread flag). If none of these actions are
taken, we assume that the message was left unread in the
user’s inbox. For each newly received email message for
a given user, we record the sender of the email (from the
“From:” line of the message) along with which (if any) of
the selected disposition options was performed. Note that to
reduce data storage requirements and simplify our model,
we ignore the parameters of these operations, e.g. the desti-
nation folder for a move operation.

For the reported experiments, we gathered this informa-
tion by monitoring the IMAP requests that were sent from
a user’s email client to an IMAP server. Because clients
can send different patterns of IMAP requests in response to
the same basic user action, we tested various email clients
and created a translation table that maps specific IMAP re-
quests to the intended user action. This translation actually
makes the detection task harder, because without it (i.e. if
we built our model using IMAP commands directly) an at-
tacker could be detected if he used a different email client
from the targeted user’s. Our intent, however, has been to
evaluate the specific feasibility of modeling user interac-
tions with an email archive. Because the same basic op-
erations would also be used when accessing an archive via
a web interface or other access protocol, our results poten-
tially translate to these other systems in addition to IMAP-

sender # k (# msgs) lr ld lm lc lu
1 10 0.8 0.2 0.0 0.0 0.1
2 8 0.5 0.0 1.0 0.0 0.0
3 20 0.0 1.0 0.0 0.0 0.0

Table 1. Example of long-term behavior data.

based email archives.

4.3 The Model

Each user has a profile consisting of two parts, a long-
term record of the frequency of different email dispositions
for each email sender, and a set of dynamically-determined
general model parameters. After a profile has been trained
on a sufficient amount of user data, it is then used to mea-
sure significant changes in that user’s recent short-term be-
havior. When those changes exceed a fixed threshold, that
short-term behavior is considered to be anomalous.

A user’s short-term behavior patterns are assessed us-
ing a fixed number of the most recent messages received
by that user. By default, the size of short-term data win-
dow is set to a user’s average number of new messages re-
ceived in one day. Long-term behavior patterns are stored
using a larger sliding window that hold a user’s email dis-
positions for a larger set of past messages. By default, this
second window is twenty times the size of the short-term
data window, or equivalent to approximately the number
of messages received in twenty days. Both of these win-
dows store frequency information for each monitored email
disposition (reading, deleting, copying, moving, setting the
unread flag).

To assess the difference between short-term and long-
term trends in behavior, we define three measures, message
variation M , sender confidence C, and window variation
W . They are defined as follows.

4.3.1 Message variation M

The message variation M is the Euclidean distance between
the disposition of a given message in recent short-term data
and the average disposition (within the long-term profile)
of past messages from that same sender. More specifically,
we place dispositions within a five dimensional space, with
each dimension corresponding to a particular type of mes-
sage disposition: read r, delete d, move m, copy c, set un-
read flag u. A single recent message s in short-term data is
represented in this space as a point with a 1 for each chosen
disposition and 0 otherwise. The long term behavior record
for a user, then, is simply the set of points {l} represent-
ing the average disposition over k past messages for each
email sender. The message variation M is defined in terms



of the distance between the short term behavior s (a single
message’s disposition) and long term behavior l as:

∆ = s − l

M =
√

∆2
r + ∆2

d
+ ∆2

m + ∆2
c + ∆2

u

For example, assume that a user’s long term behavior
profile is described in Table 1. This hypothetical user has
received 38 messages from three distinct email senders. For
the first email sender, based upon a sample of ten messages,
this user generally reads messages (80% of the time), but
sometimes deletes (20%) or just marks a message as unread
(10%). Next, assume that this user receives a new message
from sender #1 which the user decides to read and delete.
Then, the message variation M for this message is:

∆ = 〈(1 − 0.8)r, (1 − 0.2)d, (0 − 0)m,
(0 − 0)c, (0 − 0.1)u〉

M =
√

0.22 + 0.82 + 02 + 02 + (−0.1)2

≈ 0.8307

In addition to this definition of M , we also tested an al-
ternative definition for M that used a modified Euclidean
distance metric; we found, though, that this alternative met-
ric was generally much less effective than the one outlined
above. When pv = 1, then this alternative metric was used;
otherwise, the default definition for M was used. For fur-
ther information on this alternative M , see [14].

4.3.2 Sender confidence C

The numbers of messages from different mail senders is ex-
tremely variable in long-term behavior data. A given user
in the period of one month can receive dozens of messages
from one sender while only receiving one from another. Ac-
curate modeling requires an adequate number of samples; to
determine whether we have seen a sufficient number of mes-
sages for predictive purposes, we need a per-sender measure
of our confidence in the model.

To measure this confidence, which we refer to as sender
confidence C, we divide the number of messages k received
from an email sender by a fixed user-specific threshold pC .
We also set the maximum possible C value to be 1. In other
words, we define C as:

C = min(
k

pC

, 1)

By default, pC = 10; thus, we are maximally confident in
our model with respect to an email sender once we have
received ten or more messages from that sender.

Model Description
AU Read all new msgs., mark as unread.
AD Read all new msgs., delete.
AUD Read all new msgs., delete or mark unread.
AN Read all new msgs. only, no evasion.
IU Read important msgs., mark as unread.
ID Read important msgs., delete.
IUD Read important msgs., delete or mark unread.
IN Read important msgs. only, no evasion.

Table 2. Description of the eight models of
attacker email reading behavior.

user email usage days msgs. senders
Fac. work, personal 85 3997 930
Ph.D. work 84 484 202
M.S. work, sysadmin 65 2340 73

Table 3. Description of the three users’ data
sets, listing number of days of data collection,
total number of messages received, and the
number of distinct email senders.

4.3.3 Window variation W

Window variation W represents the difference between
short-term behavior data and long-term behavior data. It
is defined in terms of the values of message variation M
of all messages within the short-term behavior window and
their corresponding sender confidence C. Specifically, we
define W as:

W =

∑

i
CiMi

∑

i
Ci

Here, i ranges over all messages in the short-term window.
To detect anomalies, the W of short-term data is com-

pared to W , the average window variation during long-term
training. If W > pW W , then an anomaly is signalled. pW

is a user-specific parameter that by default is set to 2.

4.4 Simulated Attack Behaviors

Because it is extremely difficult to obtain attack data on
specific email accounts, we have tested our model using
simulated attacker behavior. As there is generally a trade-
off between false positives and true positives in anomaly
detection systems, the choice of attacker simulation method
directly affects the interpretation of our results.

As part of developing our simulation strategy, we defined
fourteen types of attacker behavior models based upon four
attack scenarios [14]. Here, though, we focus on the eight
attack models that were determined to be the most difficult



Figure 1. Window variation difference ∆W
between the eight attack models and users.
Each group of bars represents an attack
model marked on X axis. Y axis represents
∆W . The three bars in each group represent
∆W between the given attack model and each
user.

for users to detect on their own. These models are described
in Table 2. When an attacker must choose between deleting
or marking a message as unread (attack models AUD and
IUD), we choose either option for each message with prob-
ability 0.5.

In the first four models, the hypothetical attacker is as-
sumed to read every message; in practice, however, it is
likely that an attacker would only be interested in messages
from a few correspondents. To partially account for this
scenario, we divide email senders into two categories, im-
portant and non-important. More specifically, we define im-
portant email senders as those correspondents with whom a
user has a significant social or work connection. We assume
that users are most likely to notice messages from important
mail senders; further, in many attack scenarios, these are the
messages that are most likely to be targeted by an adversary.
Important messages are the set of messages that are sent by
important mail senders. Note that these measures are inher-
ently subjective; in our experiments, we determined these
sets after discussions with each monitored user.

While real attacker behavior will generally be much
more complex than that outlined in these models, an at-
tacker’s options are greatly constrained by need to avoid
detection by both the IDS and the targeted user. We dis-
cuss this issue further when we present attack simulation
results in Section 5.2.

5 Experiments

This section presents the results of the experiments used
to develop and analyze our model of user email disposition

parameter values
pv (all users) 0, 1
pC (all users) 1, 2, 10, 20
pW (all users) 1.5, 2.0, 2.5
psw (Faculty member) 40
plw (Faculty member) 200, 400, 600, 800
psw (Ph.D. student) 5
plw (Ph.D. student) 25, 50, 75, 100
psw (Master’s student) 30
plw (Master’s student) 150, 300, 450, 600

Table 4. Values defined for each parameter.
lw and sw are the number of messages in the
long-term and short term message windows,
respectively. The other parameters are de-
fined in Section 4.3.

behavior. The first part explains our experimental setup.
The next section describes our empirical evaluation of the
attacker models described in Section 4.4. The final part
presents our overall evaluation of our model’s feasibility in
terms of true and false positives.

5.1 Experimental Setup

There are fundamental privacy concerns that arise in any
situation where email activity is monitored and analyzed.
Ideally, analysis should be done automatically by programs
that will not store or expose confidential user information.
In practice, though, we needed to analyze manually user
email behavior in order to develop our simple model.

To resolve this dilemma, we developed and tested our
model using a small user population that would give con-
sent to this type of monitoring and who could provide use-
ful feedback on detected anomalies. More specifically, we
monitored user email disposition behavior of three users on
the IMAP server running in the Carleton Computer Secu-
rity Laboratory (CCSL). For these users, we logged three
months worth of IMAP server activity using a modified ver-
sion of the University of Washington’s IMAP server [24].
As mentioned earlier, the chosen five email dispositions
were extracted from this IMAP data such that variations in
email client IMAP behavior was excluded. The collected
data sets are outlined in Table 3. Our model was initially
developed and tested using data from the faculty user; it
was then further tested on data sets from the two graduate
students. While this user population is not large or com-
prehensive, the volumes, backgrounds, and purposes of the
email received by these three individuals are all extremely
varied, and as such these results appear sufficient for an ini-
tial evaluation of our approach.



To simplify analysis, we assumed that an equal numbers
of messages were received on each day; thus, we could di-
vide up the data set into a set of equal-sized “days” for anal-
ysis purposes. The short-term window (psw) was set to be
equal to one day’s worth of messages, and the long-term
window (plw) was set to be 20 days worth of messages.
Anomalies were then detected by comparing the behavior
on one day to the user’s average behavior over the 20 im-
mediately preceding days through the use of the window
variation W value explained in Section 4.3. Note that we
did not attempt to prevent days with unusual behavior from
being included in a user’s long-term behavior data.

We used the first third of each data set (approximately
one month of data) to determine the value of W , which is
needed to determine the attack detection threshold (see Sec-
tion 4.3.3). The latter two-thirds of the data were then used
to determine true and false positive rates.

5.2 Attack Simulations

Before we analyze the feasibility of our model, we first
need to study the eight attack models presented in Section
4.4 in order to understand which one would be the most
difficult for our system to detect under realistic attack con-
ditions. In so doing, we assume that if our system can de-
tect the most evasive simulated attacker, it can also detect
the others. We also assume, though, that the attacker will
attempt to avoid detection from the targeted user as well.
Note that this means that the attacker cannot simply imi-
tate normal user behavior, because this would entail making
changes to the archive (e.g. reading a message and leaving
it marked as read) that would cause a user to be suspicious.

We evaluate the difficulty of detection by comparing the
window variation difference ∆W caused by the eight attack
models and users. In each window, the calculation of ∆W
is as:

∆W = Wa − Wu

where Wa is the window variation caused by the simulated
attacker and Wu is the window variation of a user’s nor-
mal behavior. To calculate both of these values, we use our
default model parameters (see Table 4) and the profiled be-
havior calculated by sliding our long-term window across
second two-thirds of user data (the first third is used to es-
tablish W ). To calculate Wu, we also use user data for the
short-term windows; for Wa, though, the user’s short-term
behavior is replaced with attacker operations based upon the
chosen model.

Figure 1 shows ∆W for the eight attack models and each
user. From this figure, we can see that the values of ∆W
are smallest for the attack models AD, AUD, and AN ;
thus, these attack models are the hardest to distinguish from
normal user behavior. According to these results, AD and
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Figure 2. ROC plots for three users: Faculty
Member, Ph.D. Student, and Master’s Student.



User psw plw pv pC pW fp fa tp
Fac. (dp) 40 800 0 10 2.0 0.11 9 1.0
Fac. (op) 40 800 0 20 2.5 0.04 25 0.96
Ph.D. (dp) 5 100 0 10 2.0 0.16 6 0.91
Ph.D. (op) 5 75 1 20 2.0 0.04 25 0.90
M.S. (dp) 30 600 0 10 2.0 0.13 8 0.55
M.S. (op) 30 300 0 10 2.5 0.1 10 1.0

Table 5. Model performance using default (dp) and optimal (op) parameter settings. fp: false positive
rate; fa: false alarm rate; tp: true positive rate.

AN are closer to user behavior than AUD; these two at-
tack models, however, are of minimal concern, as they can
be detected by users themselves (and as such, we wouldn’t
expect an attacker to behave in these ways). In contrast, it is
harder for users on their own to discover attackers behaving
according to model AUD. Thus, we chose to use model
AUD as the attack model for evaluating our model’s ability
to detect attacks.

5.3 Feasibility Analysis of the model

To date we have focused on using offline experiments to
evaluate feasibility of the model for distinguishing legiti-
mate users from simulated attacker behavior (attack model
AUD). In particular, we’ve focused on testing how dif-
ferent parameter settings affect the trade-off between false
positives and true positives. In order for our approach to be
feasible, it must be able to detect a significant number of
attacks while also generating no more false positives than a
regular user could be expected to handle.

Figure 2 is an ROC curve for each user based on 96 sets
of parameters, with one point per parameter set. These pa-
rameter sets are selected combination of the values listed in
Table 4. For the faculty and Ph.D. student users, most of
the points are located in the upper left corner, with false
positive rate less than 20% and true positive rates more
than 80%. For the master’s student, however, the points
are spread much more evenly across the range of false pos-
itives. These plots show that our model is a relatively accu-
rate representation of the behavior of faculty and Ph.D. stu-
dents; the disposition of the master’s student emails, how-
ever, do not appear to be significantly determined by the
sender of the email message. This discrepancy can be ex-
plained by the fact that this student receives a large num-
ber of automated messages for systems administrative pur-
poses, and these messages originate from a small number of
(non-human) email senders.

To further understand how these false positive rates
would translate into alarms that a user would have to as-
sess, we also analyzed the false alarm rate fa. fa repre-

sents the number of days that will pass on average between
false alarms. As the size of short-term data is set to be the
average number of new messages received each day, the fa
is equal to 1/fp.

Table 5 shows every user’s false positive rate, per-
average day false alarm rate, and true positive rate for de-
fault and optimal parameter settings. Optimal parameter
settings are those producing the best performance in terms
of low false positives and high true positives. From this
table we can see that for all users false alarm rates are rel-
atively low, in that a user would only be bothered once a
week at most, and for the better behaved users they would
only be bothered roughly once a month (on average). Yet,
even with these settings, over half (and generally, almost
all) attacks would be detected.

6 Discussion

Although we are greatly encouraged by our results, there
are also a number of limitations that must also be consid-
ered. First, perhaps most importantly, our results are based
on a very small user population. We do not believe, how-
ever, that our model (or indeed, any simple model of user
behavior) could ever apply to all users. Indeed, results on
one of our test subjects (the master’s student) show that
for some users, email disposition does not correlate well
with email sender. These results are sufficient, however, to
conclude that our modeling strategy has a good chance of
working for some high-volume email users. Further, it also
shows that user behavior modeling can be performed sim-
ply in the email archive domain through a judicious choice
of observables and a suitable model representation.

It should also be noted that a number of assumptions
were made when analyzing the results for true and false pos-
itives, ones that were not necessarily realistic. Users tend to
receive a highly variable number of messages a day and not
a constant stream of messages, and typical email archive
attackers would not read new email messages every day.
While such complications would need to be addressed by
an online implementation, we do not believe that the addi-



tion of such complications would change our basic results.
Also, in practice we would not want to exclude email

client behavior from normal access behavior (if we mon-
itored IMAP commands) given that it can be difficult to
distinguish between intended user behavior and program-
generated incidental IMAP commands. Because program-
level behavior will be relatively repetitive, though, such an
addition shouldn’t have much of an impact on our false pos-
itive rates and in fact it should improve our true positive
rates (if attackers choose to use different email clients).

It is true that our detector can only detect an attack once
per day; further, we are uncertain what the effect of inter-
leaved attacker and normal behavior (e.g. at different times
of day) would have on our model’s accuracy. Though we
believe that our approach to simulating attack behaviors is
relatively systematic, there is still a significant gap between
realistic attacker behaviors and the attack model AUD. Can
we measure or estimate this gap, and can we improve upon
it in a meaningful way? This is an important question for
future work, both for this problem and for other approaches
to user-level anomaly intrusion detection.

Though user-level anomaly intrusion detection has nat-
ural weaknesses, from our current work we think it is pos-
sible to build a practical email archives intrusion detection
system by taking advantage of inherent features of the do-
main, selecting good features, and by using simple and effi-
cient modeling methods. Given the vulnerabilities and sen-
sitivity of email archives, we hope this work encourages the
development of email archive intrusion detection systems.
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