Haystack: An Intrusion Detection System

Stephen E. Smaha

Tracor Applied Sciences, Inc.
6500 Tracor Lane
Austin, Texas 78725-2050

ABSTRACT

Haystack is aprototype system for the detection of intrusions
Haystack
reduces voluminous system audit trails to short summaries of
user behaviors, anomalous events, and security incidents.
This is designed to help the System Security Officer (SSO)
detect and investigate intrusions, particularly by insiders
(authorized users). Haystack’s operation is based on
behavioral constraints imposed by security policies and on
models of typical behavior for user groups and individual
users.

in multi-user Air Force computer systems.

1.0 BACKGROUND

Three initiatives are changing the computer security
environment:

- The development of explicit government standards and
criteria (e.g. DOD 5200.28-STD [1]) for computer security;

- The development of multi-vendor operating system
standards, like POSIX; and

- The insistence by the government that standards be used
for computer procurements (e.g. DOD 5200.28-STD for security
standards, GOSIP and forthcoming FIPS standards for
POSIX).

1.1 National Computer Security Center (NCSC)
Requirements

The NCSC Trusted Computer System Evaluation Criteria,
DOD 5200.28-STD, permit objective evaluation of the security
of computer systems. Forexample, these Criteria require that
the Trusted Computing Base (TCB) produce an audit trail
including security-relevant information starting at the C2
level. Starting at the B3 level, the TCB must also notify the
Security Administrator when audited events exceed predefined
thresholds, and act to terminate the events if they continue to
exceed thresholds.

CH2619-5/88/0000/0037$01.00 © 1988 IEEE

37

1.2 POSIX

The IEEE P1003 POSIX Committee has defined a standard
for an operating system interface. This interface standard has
been proposed by the National Bureau of Standards to become
a Federal standard for future computer acquisitions. The
IEEE POSIX Security Working Group (P1003.6) is currently
developing security extensions to the POSIX standards effort,
including security auditing, discretionary and mandatory access
controls, and access control lists. Their goal is to produce a
system that is rated B1 by NCSC criteria. Since the
government intends to make future systems procurements
adhere to POSIX standards, this Working Group’s efforts
should be closely watched for impacts on emerging security
architectures.

1.3 Insider Threat

Most computer security experts believe that the vast majority
of computer crimes is committed by an organization’s
authorized computer users, its insiders. This is true both in
commercial systems and in sensitive government computers.
Within the Air Force, Paul Boedges, head of the Air Force
Office of Special Investigations Computer Crime Division,
reports [2] that 80 percent of known computer crimes were
carried out by trusted employees, including government
contractors. The current emphasis on access controls (like
dial-back modems) and protecting against "hackers" does not
deal with the high incidence of computer crimes committed by
insiders. In any event, the distinction between insider and
outsider becomes moot once an outsider has successfully
logged onto or otherwise penetrated a computer.

1.4 Implications

We have noted several important initiatives imposing security
constraints on the design and operation of computer systems.
As computer system software and hardware improve in their
ability to embody a security policy and to detect and respond
to security policy violations, a greater proportion of the
organization’s security needs can be enforced by the system.

We can expect that future systems will better deal with
threats to security.

However, these initiatives do not address the techniques
needed by security administrators to deal with current systems.
They also do not help administrators interpret the huge
volume of audit trail information generated by audit mechanisms
in current systems. This paper describes an approach to
improving the security of current systems as well as those
systems which will become operational in the future by
analyzing system audit trails.

2.0 INTRODUCTION

Haystack is a system for the detection of intrusions in multi-
user computer systems. Itis currently under development as
part of the Communications-Computer Security Program,
sponsored by the Air Force Cryptologic Support Center, Kelly
Air Force Base, San Antonio, Texas. The developer is Tracor
Applied Sciences, Inc., Austin, Texas.

Haystack reports on anomalous events in each day’s audit
trail files, and analyzes user activity against predefined
security constraints and models of typical user behavior.

We define an intrusion to be the inappropriate use of a
computer: that is, use of the computer that violates the
security and administrative policies established for that
computer. Unlike many commercia) computers, the operational
military systems towards which Haystack is targeted have an
explicit security policy which states how the computer may be
used and likewise states prohibitions for its use.

2.1 The Target Computer System

The target computer system is a Unisys (Sperry) 1100/60
mainframe running the OS/1100 operating system. This
systemis used by all Air Force Bases as a standard computing
platform. OS/1100 has complex security monitoring features
available and many attributes of a Trusted Computing Base
which could be rated at the C2 level according to NCSC
criteria. Currentsecurity policies take advantage of some, but
not all, of these security features.

Thereislittle external networking in this environment excluding
occasional dial-in use under dial-back control monitored by
the system operator. The 1100/60 is mostly used for
conventional data processing applications like those run on
IBM mainframes in the private sector. The typical 1100/60
audit trail consists of about a million recorded events per
week, andincludes accounting, performance monitoring, crash

38

recovery, and security related information. The 1100/60
normally handles unclassified but sensitive (Privacy Act)
data. The primary threats to the data on this machine result
from data aggregation (accumulating sufficient unclassified
information to allow deriving conclusions equivalent to
classified information), violation of privacy rights, alteration
of key logistical data, and financial fraud.

2.2 The Organizational Context: The Big Picture

The target systemis an operational military computing resource
where security is a major consideration. Since Haystack is
intended to augment, notreplace, existing analysis capabilities
and security personnel, its design must considera "big picture”
thatincludes the entire security and investigative process, as
well as the information handling needs of the organization.

Figure 1 shows the use of audit trail inform~tion within the
entire investigative process, starting from raw data (simple
events occurring on the target system, like logins, file accesses,
or changes in the security state of the system), and ending in
a detected security violation that has been validated by
standard investigative procedures.

S it
t?curliy INTRUSION
Violation
4
Investigation
Human Analysis
. . External Knowledge
Security Incident

Who: Subject/Object When: Date/Time
What: Suspected Intrusion Type

Where: Location (physical or logical)
Relevant Events: Details, Summary Reports

4

Haystack Processor
on Analysis Platform

Processed Canonical Audit
Inputs Trail (CAT) Events
Haystack Pre-Processor
on Target System
Raw Target System’s
Inputs Audit Trail Events

Figure 1. Haystack’s Role in Investigations

3.0 IMPORTANT CONCEPTS

Because Haystack is a new system in a relatively new area
of research and development, it reflects a particular
understanding of its underlying problem domain of intrusion
detection and its intended security-conscious military
environment. There are several important concepts behind its
development.

3.1 How To Detect Intrusions

The process of detecting intrusions on computer systems
shares properties with other forms of detection and
enforcement.

3.1.1 One method of intrusion detection is to look for
behavior that is not good or typical, given some definition or
measure of "good" or "typical". For example, if a user’s print
output suddenly increases by 2000% and its absolute value is
also large, the Security Officer might become suspicious, and
investigate the possibility of information leakage. Of course,
the user might have valid reasons for such behavior, like a
special year-end report. The SSO’s investigative process is
intended to look into such possibilities.

3.1.2 Another method of intrusion detection is to look for
behavior thatis "bad" by definition. For example, if a user tries
to print the password file, the Security Officer should investigate
this behavior, whether or not the user had authorization to read
that file. Disadvantages of this approach are that it can only find
pre-programmed "bad" behavior. "Creative malice” may go
undetected.

Ideally, the computer security model, as adapted by the
organization, and the operating system’s security capabilities
could together be used as a basis for logically deriving atleast
some of the definitions and rules that characterize "bad
behavior" for an intrusion detection system. Unfortunately,
there is no strong consensus on the formal characteristics of
security policies in general.

3.2 User Models

To attempt to detect behavior that is not good or typical
implies the existence of a user model that defines the norm for
that user. There are two general approaches to user modeling,
depending whether the user is treated as an individual or a
member of a user class. Itis likely that a realistic user model
will require both approaches.

39

3.2.1 A user model may be based on information about the
individual user’s past behavior, giving a norm of “typical”
behavior for that user.

A model based on knowledge of the user’s past behavior is
customized for the user, and reflects the customary behavior
of that user. It takes into account the fact that different users
have very individual use patterns on a system, depending on
job assignment, level of experience, work style, and
personality.

Disadvantages of this approach are that the model may be
modified ("trained") by a cunning user over time. Thus it may
have trouble detecting intrusions that do not involve abnormal
resource or command utilization. It may also be hard to
establish what default behavioral characteristics should be
assigned to a new user. The new user may trigger too many
suspicion flags, or too few, and the detection mechanism may
be ineffective until it has acquired enough information about
this new user to form a statistically valid basis. Also, the
model may interpret innocent variations in user behavior, like
those due to increased skill or changes in job assignments, as
suspicious.

3.2.2 The user model may be based on generic notions of
acceptable behavior for a group of users. The generic groups
should distinguish among different groups of employees, with
different expected and permitted behaviors for data entry
clerks than for Security Officers or software developers.

Having predefined mutually exclusive categories of users is a
refinement of the common understanding of multi-level security.
Since the number of user categories will be much smaller than
the number of users, it will be easier to maintain a set of user
categories.

There are disadvantages to this approach, as well. One user
may fill more than one role on the system. A user whose work
characteristics are at the edge of applicability of a general
group may trigger many false alarms. Also, it is hard to define
a conceptual basis for adapting this kind of model to actual
usage patterns over time.

3.2.3 Finally, a user model could combine these two
approaches, considering both the individual’s past behavior
and membership in a user group. This is the approach used in
Haystack. Such a combined model starts a new user with a
"template” profile appropriate to the user’s work category.
This effectively supplies a hypothetical past for the subject
plus the appropriate restrictions on the user due to group
membership and work assignments.

3.3 Intrusion Types

Haystack is designed to detect six types of intrusions. Each
may be detected in several ways, the most obvious of which
are listed.

3.3.1 Attempted break-ins (by unauthorized users) are
detected by monitoring login attempts. A successful break-in
occurs when an outsider "convinces" the system that he/she
is an authorized user by supplying a valid user identification
and password. These are detected by atypical behavior
profiles or violations of security constraints.

3.3.2 Amasquerade attack occurs when the intruder attempts
to "convince" the system that he/she isreally a user other than
the one the system expects him/her to be, presumably one
with higher privilege. These are detected by atypical behavior
profiles or violations of security constraints.

3.3.3 Penetration of the security control system (where a
user attempts to modify the security characteristics of the
system, like its passwords or authorizations) is detected by
use of privileged logins or privileged system services.

3.3.4 Leakage (causinginformation tomove outof the system,
perhaps by printing a large number of files or displaying them
on a terminal that can capture them) is detected by atypical
usage of I/O resources.

3.3.5 Denial of service (making systemresources unavailable
to other users) is detected by atypical usage of system
resources or use of special privileges to modify access rights
to resources.

3.3.6 Malicious use (resource hogging, file deletion, and
other miscellaneous attacks) may be detected by atypical
behavior profiles, violations of security constraints, or use of
special privileges.

3.3.7 Although this is not a design goal of the current
Haystack prototype, detecting some instances of creation and
propagation of "virus" programs through audit trail analysis
may be possible if certain conditions are met by the target
operating system. Detecting modifications to executable
files, a useful virus detection technique, could be done if all
executable files are marked by attributes of their names, or if
executability is a file access permission maintained by the
target operating system, or if an exhaustive list of executable
program files is available for comparison whenever files are
modified. In the case of Haystack’s target system, the
Unisys 1100/60 operating under current versions of 0S/1100,
however, no evidence for either of the first two conditions is

40

available in the audit trail. In addition, the number of files and
file manipulations precludes use of the third technique in the
current Haystack prototype. Obviously such techniques would
not detect viruses targeted at interpretive programs, like
command intepreters, that themselves process non-executable
files.

3.4 Event Horizon

Analyzing the audit trail of a computer system could be
likened to putting a day (or week or month) of the life of the
target mainframe computer into the analysis platform - all at
once! Since Haystack’s analysis platform is a much smaller
machine than the target mainframe, with significantly smaller
memory and storage resources, we need to consider how
much of the target’s audit trail can be dealt with at one time.

We define the event horizon as the number of audited events
the audit trail analysis system must "remember” in full detail
at one time while processing a series of events recorded in the
audit trail.

In the simplest case, where the event horizon is one, each
individual event is analyzed without reference to specific
details of preceding or succeeding events. All required
information from an event is abstracted from the event data
and stored as part of a data aggregate, like a statistical
ensemble or the weights of the connections in a neural network.
Analysis of the event is performed with respect to the recorded
data aggregates assembled from the processing of previous
events. After all events have been aggregated, the data
aggregates themselves are analyzed. This aggregation
process provides a significant reduction in the volume of data
and improves throughput.

To identify certain kinds of behavior, the intrusion detection
system would require an event horizon greater than one. For
example, each event could be analyzed in light of all the
events in the user’s session, where a session is defined as the
setof user activities bounded by logginginand logging out. Or
each event could be analyzed with respect to all the events
across multiple sessions belonging to that user. The latter
case might help prevent cases where a malevolent user would
attempt to "train” statistically-based analytical techniques to
permit broader variations in behavior over time, until some
particular intrusion becomes "acceptable” to the system.

Unfortunately, there is no reasonably small number N which
could serve as an upper bound on the number of events which
would allow us to perform meaningful pattern-matching, since
plausible patterns may require an analysis of events covering
atleast an entire session, and one session can contain a very

large number of events. Also, itis hard to find actual audited
intrusions to use as patterns to be matched. For these
reasons, the prototype version of Haystack assumes an event
horizon of one.

3.5 Learning (Self-modifying) Behavior

Because Haystack maintains a statistically-based model of a
user, its individual user models evolve over time to adjust to
changes in the users’ work styles and task requirements. To
prevent this characteristic from becoming a security liability,
various techniques allow the SSO to observe and evaluate the
effects of these changes over time, as described in section
4.2.2.3 below.

4.0 PROJECT SUMMARY

The basic approach to intrusion detection in Haystack is
similar to Dorothy Denning’s model presented in "An
Intrusion-Detection Model” [3]. We have modified her model
to suit the data available on our target machine and the
security requirements of our users.

4.1 Design Goals
Several design goals have shaped our work with Haystack:

a Improve the System Security Officer’s intrusion detection
capabilities in a time-sharing data processing environment,

b Provide adequate throughput to keep up with a high-
volume mainframe computer;

¢. Monitor time-sharing and batch processing users, not
users of specialized transaction processing applications;

Users of specialized transaction processing
applications on the target system are controlled by
application-level security systems. The available
auditinformation for these applicationsis not adequate
for effective intrusion detection.

d. Maximize the portability of our design;

Although the current target system is the Unisys
(Sperry) 1100/60, we consider future U. S. Air Force
POSIX-based computer system acquisitions as our
secondary target. This dictates compatibility with the
emerging POSIX standard, ANSI C, and standard
SQL for database functions.

41

By standardizing on a Canonical Audit Trail (CAT) file
as a single representation for audit trail events, we
maximize the portability of our audit trail analysis
system to other computer systems. The CAT format
was designed to be compliant with NCSC guidance in
"A Guide to Understanding Auditin Trusted Systems"
(NCSC-TG-001) for audit requirements at the Bl
level [4], and also reflects our analysis of the formats
of several computer vendors’ audit trails.

e. Designa "friendly", usable system that will not be resisted
by its intended users, the SSO’s;

f. Gain experience in audit trail interpretation and develop a
conceptual base for future work;

This will advance a critical tool for deterring insider and
other organized threats. For example, the prototype
version of Haystack will operate in a batch processing
mode. Field experience may show that a real-time
monitoring mode is preferable and feasible.

g. Use a currently available Air Force standard computing
platform for this system. This platformis the Zenith Z-248, an
Intel 80286-based “clone" of the IBM PC-AT, running MS-
DOS.

4.2 System Organization

The Haystack system consists of two program clusters, one
executing on the Unisys (Sperry) 1100/60 mainframe and the
other executing on the Z-248 PC. At the highest level,
Haystack is a system that interacts with three external
entities: the Unisys (Sperry) 1100 operating system, the
System Security Officer, and the database management system
on the analysis platform. The conceptual structure of the
Haystack system is represented in Figure 2, and the
operational structure of the Haystack system is shown in
Figure 3. ‘

4.2.1 Unisys (Sperry) Haystack Programs

The Unisys (Sperry) programs extract the required audit trail
records from the operating system’s audit trail logs, parse
them with respect to the abstract elements that constitute a
generalized audit trail event, transform them into the required
Canonical Audit Trail (CAT) file format, and write them to a
standard 9 track ANSI tape. The SSO may select particular
users and time intervals for analysis, if desired, or may
process the entire set of audit trail information.

Sperry
08/1100

l Audit Trail

User and
Group
Profiles

Command
Information

Session
Histories

Reports

ORACLE

DBMS sso

Figure 2. Conceptual Structure of Haystack

CAT
File
UNISYS 1100 Z-248 PC
Audit
Trail Reports

Figure 3. Haystack Operational Structure

4.2.2 PC Haystack Programs

The PC Haystack programs constitute most of the code of the
system. There are four main functions implemented on the PC.

4.2.2.1 Processing the Canonical Audit Trail (CAT) File

The most I/O-intensive code on the PC is that which reads the
CAT tapes from the mainframe, detects and logs any obvious
anomalies, and creates new session records for the users
whose activities were recorded on the tapes. The processing
bandwidth of this stage of Haystack operation is inherently
limited by the medium of transmission (1600 bits per inch on
magnetic tape) and the hardware used to read the medium
(less than 100 inches per second) to less than 160 kilobytes
of data per second.

A session history record is created when a login event occurs
for a user, based on the user’s profile. That session record is
cached for the duration of the processing of the tape to reduce

42

ongoing access to the database on disk. The session history
record is written to the database when a logout event for that
user is detected.

Because the Air Force security policy for the 1100/60 defines
what special privileges and capabilities may be assigned to
specific classes of users, Haystack maintains a database of
user groups as the basis for individual user profiles. If a user
recorded in the CAT file has not previously been encountered
by Haystack, a new user profile with minimal capabilities is
created consistent with the principle of least privilege. This
new user and the new user profile are flagged for review by the
SSOinthe summary report generated by this step of processing.

The user’s session record is updated as audit events are
recorded for each user. When security-relevant events are
detected, their details are logged as "anomalous events” into
a separate report for the SSO. Thus all security-relevant
events are listed in detail for the SSO. Since they make up
only a small percentage of the audit events, typically less than
0.5%, this does not burden the SSO.

Because of special characteristics of the 1100/60’s audit trail
mechanism, a user’s session events (the login, logout, and
intervening activities) are all guaranteed to be present in the
same CAT file, unless the mainframe "crashes"
catastrophically. If the PC detects an 1100/60 system "crash"
event, all open user sessions are automatically closed.

When the tape has been processed, tworeports are produced.
The summary report has an overview of processing, a list of
new users created automatically by Haystack, and a list of
users whose session’s "suspicion quotients" for intrusions
exceeded a group- dependent threshold. The detailed report
lists anomalous events recorded for each user. This provides
a significant reduction of audit data compared to a "raw data"
audit listing that could well be extremely voluminous.

4.2.2.2 Analysis of Current Sessions

After the CAT tape has been reduced to a new set of session
history records in the database, Haystack analyzes the new
sessions using statistical and pattern-based techniques,
looking for evidence of predefined "bad" behavior and atypical
or suspicious behavior. The pattern-based techniques assess
multivariate characteristics of the sessions compared against
expected characteristics of particular types of intrusions.
Rule-based systems components could be added in future
versions of Haystack to evaluate the overall impact of
observations, including confidence levels.

4.2.2.3 Longitudinal Analysis of Sessions

Because Haystack retains past user sessions inits databases
(deleting them under the SSO’s control for archiving and
maintenance purposes), it can help the SSO look for trends
and tendencies in the user’s behavior over time. If a malicious
insider believed thata statistically-based monitoring technique
was in place, he/she could try to "train" the system gradually
overtime to accept greater variations in behavior. Forexample,
the insider might gradually increase the expected number of
pages printed by the user until the range of "typical" print
outputs for the user was large enough to allow him/her to dump
an entire mainframe database. Some of this "training" can be
detected as a statistical trend in user behavior over time.

The SSO may also apply a variety of "aging" techniques to the
data to account for the effects of skill improvement in novice
users, changes in job assignments, and frequency of use.

4.2.2.4 Utilities

Several SQL database applications help the SSO maintain the
databases that control Haystack, and give the SSO the ability
to tailor its function to his or her site. These include editors for
user and group profiles, an editor for session histories, and an
editor to manage the database containing the expected
behaviors and relative weights for the session features
analyzed for each group. Haystack also allows the SSO to
make "ad hoc" queries against the databases. This will assist
investigations by letting the SSO generate new reports and
analyses.

4.3 Security in Haystack

The OS/1100 audit trail, the primary data source, is protected
by strict system access controls while on the 1100/60. The
1100/60 preprocessing step and the resulting data files on
tape are under the control of the SSO. The Haystack software
running on the PC has password access control on the
databases, and the PC itself is physically protected. Because
the bulk of the processing and most of the data are on a
physically separate computer, the degree of influence that an
1100/60 mainframe user can have on the intrusion detection
process is restricted to the possible effects on "raw" input
data. On the analysis platform, all SQL database transactions
except the creation of new session history records are
themselves audited to maintain a history of changes in
Haystack and its databases.

43

4.4 Current Status

Development of Haystack was underway at the time this
paper was written. The development team consisted of three
software developers and one librarian/technical writer.

The analysis platform is an Intel 80286-based Zenith Z-248
with an ANSI standard 9 track tape drive, a large Winchester
disk, floating point coprocessor hardware, and at least 4
megabytes of memory.

The software environment consists of the MS-DOS operating
system, PC ORACLE, an SQL-based database management
system, Microsoft C and Assembler, acommercially available
windows and forms package, and CLIPS, an expert system
shell available in portable C source code from NASA.

5.0 SUMMARY

Haystack is designed to be an operational utility for the
System Security Officer to reduce enormous quantities of
generally obscure audit trail data to short summaries of
interpreted information for further investigation of potential
computer intrusions. Because of the ambiguity of the data and
the variety of possible interpretations for most user behaviors,
the SSO remains the critical element in the investigative
process. Haystack assists the SSO by providing "hunches,"
clues, and summaries of relevant data.

6.0 FUTURE RESEARCH

There are many areas for future research in the general area
of computer intrusion detection systems.

- Howdowetestan intrusion detection system and measure
its effectiveness? There are very few known recorded
instances of system penetration; most scenarios used for
testing have been generated by software developers based on
their own understanding of system weaknesses. Testing and
validation are required to "sell" the concept of intrusion
detection to organizations, especially commercial ones.

- In what ways would alternate pattern-recognition
techniques, such as rule-based (expert) systems, language-
based approaches (like semantic analysis), and connectionist
models (neural nets), improve our ability to detect event
patterns?

- Would connectionist approaches to user modeling (e.g.
neural nets) improve efficiency or effectiveness? If so, how
would such systems be "trained" or programmed?

- What additional audit trail information, such as those
expected from a B2-rated secure computing system, would
facilitate the detection of virus attacks?

- Could weimplement areal-time intrusion detection system
with sufficient security and sufficient reliability to be entrusted
with the ability to shut down an offending user or even the
entire system?

- Would more complex statistical techniques for user
modeling and data interpretation, including multidimensional
and multivariate methods, improve the detection ability of the
system? What effects would these techniques have on the
rates of false positives and false negatives?

- What additional information could be extracted from the
host system to improve our intrusion detection capability?
Haystack’s sole data source is the standard audit trail from
the operating system.

- What visual metaphors are most effective for presenting
computer security information to the SSO? Is there a security
metaphor that is analogous to the spreadsheet for financial
analysis?

- What are the relevant privacy and legal issues? Itisclear
that users must be notified of monitoring. But if monitoring is
based solely on standard audit trail information from the
operating system, is notification required? If notification is
required, it must it be given at every login to the system
(through an appropriately worded "banner"” message), oris a
single notice prior to first use sufficient? Also, if monitoring
techniques with non-security applications (like keystroke
capture and counting) are added to the audit trail analysis
system, this may affect employee morale and reduce the
perceived usefulness of the target computer system for
exploratory or research work.

Acknowledgments:

I am grateful to Lieutenant Tim Grance, our Air Force
technical contact, for his active support for our work, and
Teresa Lunt of SRI International for helpful discussions. I
especially thank Howard Herbert, Bill Steffan, Marshall Bruni,
and the rest of the Haystack team at Tracor.

Bibliography
[1] National Computer Security Center, "DoD Trusted

Computer System Evaluation Criteria," DoD 5200.28-
STD, 1985.

44

[2] Paul Boedges, quoted in "Air Force Mounts Offensive
Against Computer Crime,"” Government Computer News,
July 8, 1988, p. 51.

[3] Dorothy E. Denning, "An Intrusion-Detection Model",
Proceedings of the 1986 IEEE Symposium on Security
and Privacy, April 1986, pp. 118-131.

[4] National Computer Security Center, "A Guide to
Understanding Audit in Trusted Systems", 28 July 87,
NCSC-TG-001.

