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In  surveying 
current approaches to 
distributed sh ared- 
memo y computing, 
these authors find that 
the reduced cost of 
parallel software 
development will he@ 
make the DSM 
paradigm a viable 
solution to large-scale, 
high -performance 
computing. 

esearch and development of systems with multiple processors 
has shown significant progress recently. These systems, needed 
to deliver the high computing power necessary for satisfylng 
the ever-increasing demands of today's typical applications, 
,usually fall into two large classifications, according to their 

memory system organization: shared- and distributed-memory systems. 
A shared-memory system' (often called a tightly coupled multiproces- 

sor) makes a global physical memory equally accessible to all processors. 
These systems offer a general and convenient programming model that 
enables simple data sharing through a uniform mechanism of reading and 
writing shared structures in the common memory. Users can readily emu- 
late other programming models on these systems. The programming ease 
and portability of these systems cut parallel software development costs. 
However, shared-memory multiprocessors typically suffer from increased 
contention and longer latencies in accessing the shared memory, which 
degrades peak performance and limits scalability compared to distributed 
systems. Memory system design also tends to be complex. 

In contrast, a distributed-memory system (often called a multicomputer) 
consists of multiple independent processing nodes with local memory mod- 
ules, connected by a general interconnection network. The scalable nature 
of distributed-memory systems makes systems with very high computing 
power possible. However, communication between processes residing on 
different nodes involves a message-passing model that requires explicit use 
of sendheceive primitives. Because they must take care of data distribu- 
tion across the system and manage the communication, most program- 
mers find this process more difficult. Also, process migration imposes prob- 
lems because of different address spaces. Therefore, compared to 
shared-memory systems, hardware problems are easier and software prob- 
lems more complex in distributed-memory systems. 
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Figure 1. Structure and organization of a DSM system. 

A relatively new concept-distributed shared mem- 
~ry~,~-combines the advantages of the two approaches. 
A DSM system logically implements the shared-memory 
model on a physically distributed-memory system. Sys- 
tem designers can implement the specific mechanism for 
achieving the shared-memory abstraction in hardware 
or software in a variety of ways. The  DSM system ktdes 
die remote communication mechanism from the appli- 

writer, preserving the programming ease and 
ility typical of shared-memory systems. DSM sys- 

tems allow relatively easy modification and efficient exe- 
cution of existing shared-memory system applicanons, 
whch preserves software investments while maximizing 
the resulting performance. In addition, the scalability 
and cost-effectiveness of underlymg dismbuted-memory 
systems are also inherited. Consequently, DSM systems 
offer a viable choice for building efficient, large-scale 
multiprocessors. 

The  DSM model’s ability to provide a transparent 
interface and conveiuent programming envlronment for 
distributed and parallel applications have made it the 
focus of numerous research efforts in recent years. Cur- 
rent DSM system research focuses on the development 
of general approaches that minimize the average access 
time to shared data, while maintaining data consistency. 
Some solutions implement a specific software layer on 
top of existing message-passing systems. Others extend 
strategies applied in shared-memory multiprocessors 
with private caches to multllevel memory 

This article reviews the increasingly important area of 
After first covering general DSM concepts and 
ches, it surveys existing DSM systems, developed 
as research prototypes or commercial products 
ndards. Although not exhaustive, this survey tries 

to provlde an extensive, up-to-date overview of several 
key implementation schemes for maintaining data in 
DSM systems. 
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General DSM 

ADSM system generally involves a set of nodes or clus- 
ters, connected by an interconnection network (Figur 

cormectlon controller in each cl 
into the system. 

Information about states an 
particular data blocks usually res 
or directory. Directory storage 
among the most important desi 

storage either for the e 

els exist, they usually contain on 
corresponding interface control 

Classz@cations of DSM systems 
Since the first DSM research efforts in the mid-e 



research prototypes. Designers of the early DSM sys- 
tems were inspired by the principles of virtual memory, 
as well as by cache-coherence maintenance in shared- 
memory multiprocessors. 

increasingly popular and powerful, represent the most 
suitable platform for many programmers to approach 
parallel computing. However, communication latency, 
including operating system overhead and transfer time, 
remains the main obstacle for matchmg the performance 
of high-end machines with those network systems. Con- 
versely, designers of shared-memory multiprocessors 
strive for scalability, achieved through physical distrib- 
ution of shared memory and sophisticated organization 
of the overall system through such techniques as clus- 
tering and hierarchical layout. 

Thus, as the gap between multiprocessors and multi- 
computers (that early DSM intended to bridge) narrows 
and the basic ideas and performance of both classes of 
systems seemingly converge, many more emerging sys- 
tems fit into the large family of modern DSM. T o  elim- 
inate misunderstanding, we adopt a general definition 
for this family, which assumes that all systems providing 
a shared-memory abstraction on a distributed-memory 
system belong to the DSM category. 

There are three key issues when accessing data 
items in the DSM address space, while keeping the 
data consistent: 

How the access actually executes -+ DSM algorithm. 
Where the access is implemented + Implementa- 
tion level of DSM mechanism. 
What  the precise meaning of the word consistent is + 
Memory consistency model. 

Networks of workstations, wh 

DSM ALGORITHMS 
The algorithms for implementing DSM deal with two 
basic problems: 

0 static and dynamic distribution of shared data across 

0 prese+ng a coherent view of shared data, while min- 

Two frequently used strategies for distributing shared 
data are replication and migration. Replication allows 
multiple copies of the same data item to reside in dif- 
ferent local memories (or caches). It is mainly used to 
enable simultaneous accesses by different sites to the 
same data, predominantly when read sharing prevails. 

Migration implies that only a single copy of a data 

the system, to minimize access latency, and 

imizing coherence-management overhead. 

item exists a t  any one time, so the data item must be 
moved to the requesting site for exclusive use. T o  
decrease coherence-management overhead, users pre- 
fer this strategy when sequential patterns of write shar- 
ing are prevalent. System designers musG choose a DSM 
algorithm that is well-adapted to the system configura- 
tion and characteristics of memory references in typi- 
cal applications. 

Classifications of DSM algorithms and the evaluation 
of their performance have been extensively discu~sed.~-l~ 
Our presentation follows a classification of algorithms 
similar to that of Michael Stumm and Songnian Zhou.* 

Single readedsingle writer algorithms 
This class of algorithms prohibits replication, while per- 
mitting but not requiring migration. The simplest DSM 
management algorithm is the central semer algorithm.8 
The approach relies on a unique central server that ser- 
vices all access requests from other nodes to shared data, 
physically located on this node. This algorithm suffers 
from performance problems because the central server 
can become a bottleneck in the system. Such an orga- 
nization implies no physical distribution of shared mem- 
ory. A possible modification is the static distribution of 
physical memory and the static distribution of respon- 
sibilities for parts of shared address spaces onto several 
different servers. Simple mapping functions, such as 
hashing, can serve to locate the appropriate server for 
the corresponding piece of data. 

More sophisticated SRSW algorithms also permit 
migration. However, only one copy of the data item can 
exist at any one time, and this copy can migrate upon 
demand. This kind of algorithm is called hotpotato.1° If 
an application exhibits high reference locality, the cost 
of data migration is amortized over multiple accesses, 
because data moves not as individual items, but in fixed- 
size uni teblocks.  The  algorithm can perform well 
when a longer sequence of accesses from one processor 
uninterrupted by accesses from other processors is 
likely, and write after read to the same data occurs fre- 
quently. Anyway, performance of this rarely used algo- 
rithm is restrictively low, because it does not capitalize 
on the parallel potential of multiple read-only copies, 
when the read sharing prevails. 

Multiple readedsingle writer algorithms 
The main intention of MRSW (or read-replication) algo- 
rithms is to reduce the average cost of read operations, 
counting that read sharing is the prevalent pattern in par- 
allel applications. T o  this end, they allow simultaneous 
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local execution of read operations at multiple hosts. Only 
one host a t  a time can receive permission to update a 
replicated copy. A write to a writable copy increases the 
cost of this operation, because the use of other replicated 
stale copies must be prevented. Therefore, MRSW algo- 
rithms are usually invalidatlon-based. A great many pro- 
tocols follow this principle. 

Algorithms in this class differ in the allocation of 
DSM management responsibility. Kai Li and Paul 
Hudak proposed several of them.7 Several terms need 
defining before we discuss those algorithms: 

Manager: the site respoiisible for organizmg the write 
access to a data block, 
Owner: the site that owns the only writable copy of 
the data block, and 
Copy set: a set of all sites that have copies of the data 
block. 

The algorithms proposed by Li and Hudak include: 

(1) Centralzzed manager algovzthm. All read and write 
requests go to the manager, which is the only site 
that keeps the identity of a partlcular data block's 
owner. The manager forwards the data request to 
the owner, and waits for confirmation from the 
requesting site, indicating that it received the copy 
of the block from the owner. For a write operation, 
the manager also sends invalidations to all sites from 
the copy set (a vector that identifies the current 
holders of the data block, kept by the manager). 

(2) Improved centvalzzed manager algorithm. Unlike the 
original centralized manager algorithm, the owner, 
not the manager, keeps the copy set. The  copy set 
goes together with the data to the new owner, 
which is also responsible for invalidations. Here, 
decentralized synchronization improves overall 
performance. 

(3) Fzxed dzstvzbuted manager algorithm. In this algo- 
rithm, instead of centralizing the management, each 
site manages a predetermined subset of data blocks. 
The  distribution proceeds according to some 
default mapping function. Clients can stdl override 
it by supplying their own mapping, tailored to the 
application's expected behavior. When a parallel 
program exhibits a high rate of requests for data 
blocks, this algorithm outperforms the centralized 
solutlons. 

(4) Efpoadcast dzstnbuted manager algoritbm. This algo- 
rithm has no manager. Instead, the requesting 
processor sends a broadcast message to find the data 

block's true owner. 

the request to the node representing 
owner according to the information k 
table. For every read and write re 

 invalidation^.^ 

allows replication of data blo 

write-update protocols. This algor 
high coherence traffic, especially when up 

be complex and demanding. One way to 
consistency is to globally sequence the 
uons-to implement reliable multicast. 
sor attempts to write to the shared m 



modification arrives at a site, it verifies the sequence 
number, and if not correct, it requests a retransmission. 

A modification of this algorithm distributes the 
sequencing task.l’ In this solution, the server managing 
the master copy of any particular data structure 
sequences writes to that data structure. Although the 
system is not sequentially consistent in this case, each 
particular data structure is maintained consistently. 

Avenues for performance improvement 
Researchers have dedicated considerable effort to vari- 
ous modifications of the basic algorithms, to improve 
their behavior and enhance their performance by reduc- 
ing the amount of data transferred in the system. Most 
of those ideas were evaluated by simulation studies, and 
some were implemented on existing prototype systems. 

An enhancement of Li’s algorithm called the Shrewd 
algorithm eliminates all unnecessary page rransfers with 
the assistance of the sequence number per copy of a 
page.1° On each write fault at a node with an existing 
read-only copy, the sequence number goes with the 
request. If this number is the same as the number kept 
by the owner, the requester can access the page without 
its transfer. This solution shows remarkable benefits 
when the read-to-write ratio increases. 

All of Li and Hudak‘s solutions assume that the page 
transfer executes on each attempt to access a page that 
does not reside on the accessing site. One modification 
employs a competitive algorithm and allows page repli- 
cation only when the number of accesses to the remote 
page exceeds the replication A similar rule applies 
to migration, although because only one site can have 
the page in this case, the condition to migrate the page 
is more restrirtive and dependent on other sites’ access 
pattern to the same page. The  performance of these 
policies is guaranteed to stay within a constant factor 
from the optimal. 

The Mirage system applies another restriction to data 
transfer requests, which reduces thrashing-an adverse 
effect occurring when an alternating sequence of 
accesses to the same page issued by different sites makes 
its migration the predominant activity. The  solution to 
this problem defines a time window A in which the site 
is guaranteed to uninterruptedly possess the page after 
acquiring it. Users can tune the value of A statically or 
dynamically, depending on the degree of processor 
locality exhibited by the particular application. 

A variety of specific algorithms have been imple- 
mented in existing DSM systems or simulated exten- 
sively using appropriate workload traces. Early DSM 

implementations found the main source of possible per- 
formance and scalability improvements in various solu- 
tions for the organization and storage of system tables, 
such as copy set, as well as in the distribution of man- 
agement responsibilities. T o  improve performance, 
recent DSM implementations relax memory consistency 
semantics, which requires considerable modification of 
the algorithms and organization of directory informa- 
tion. Implementations of critical operations using hard- 
ware accelerators and a combination of invalidate and 
update methods also improve modern DSM system 
performance. 

IMPLEMENTATION LEVEL OF THE DSM MECHANISM 
The  level where the DSM mechanism is implemented 
is one of the most important decisions in building a 
DSM system: it affects both programming and overall 
system performance and cost. 

T o  achieve ease of programming, cost-effectiveness, 
and scalability, DSM systems logically implement the 
shared-memory model on physically distributed memo- 
ries.12J4 Because the DSM’s shared address space dis- 
tributes across local memories, a lookup must execute 
on each access to these data, to determine if the requested 
data is in the local memory. If not, the system must bring 
the data to the local memory. The system must also take 
an action on write accesses to preserve the coherence of 
shared data. Both lookup and action can execute in soft- 
ware, hardware, or the combination of both. According 
to this property, systems fall into three groups: software, 
hardware, and hybrid implementations. 

T h e  choice of implementation usually depends on 
pricelperformance trade-offs. Although typically supe- 
rior in performance, hardware implementations reqGre 
additional complexity, which only high-performance, 
large-scale machines can afford. Low-end systems, such 
as networks of personal computers, based on commod- 
ity microprocessors, still do not tolerate the cost of addi- 
tional hardware for DSM, which limits them to soft- 
ware implementation. For mid-range systems, such as 
clusters of workstations, low-cost additional hardware, 
typically used in hybrid solutions, seems appropriate. 

Software DSM implementations 
Until the last decade, distributed systems widely 
employed message-passing communication. However, 
this appeared to be much less convenient than the 
shared-memory programming model because the pro- 
grammer must be aware of data distribution and explic- 
itly manage data exchange via messages. In addition, 
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Sofiware DSM 
implementations 

These fall into user-level, OS, and pro- 
gramming language variations. 

USER-LEVEL AND COMBINED 
SOFIWARE IMPLEMEN'IATIONS 
Table A and the following paragraphs 
summarize these implementations: 
IVY, Mermaid, Munin, TreadMarks, 
Midway, Blizzard, Mirage, Clouds, 
Orca, and Linda. 

IVY 
IVY' was one of the first proposed soft- 
ware DSM solutions, implemented as a 
set of user-level modules built on the 
top of the modified Aegis OS on the 
Apollo Domain workstations. IVY con- 

tains five modules. Three of them from 
the client interface @recess management, 
memory allocation, and initialization) con- 
sist of a set of primitives that can be 
used by application programs. Remote 
operation and memoly mapping routines 
use the OS low-level support. 
IVY provides a mechanism for con- 

sistency maintenance using an invali- 
dation approach on 1-Kbyte pages. For 
experimental purposes, three algo- 
rithms for ensuring sequential consis- 
tency are implemented: the improved 
centralized manager, the fixed distrib- 
uted manager, and the dynamic dis- 
tributed manager. Performance mea- 
surements on a system with up to eight 
clusters have shown linear speedup 
compared to the best sequential solu- 
tions for typical parallel programs. 
Although IVY'S performance could 

have been improved by implementing 
it on the system level rather than on the 
user level, its most important contribu- 
tion is in proving the viability of the 
DSM concept on real systems with par- 
allel applications. 

Mermaid 
An algorithm similar to IVY'S also 
serves in Mermaid2-the first system to 
provide DSM in a heterogeneous envi- 
ronment (HDSM). The prototype con- 
figuration includes S d n k  worksta- 
tions and DEC Firefly multiprocessors. 
The DSM mechanism is implemented 
a t  the user level, as a library package for 
linking to the application programs. 
Minor changes to the SunOS OS kernel 
include setting the access permission of 
memory pages from the user level, as 
well as passing the address of a DSM 

Table A. Software DSM implementations. 

IMPLEMENTATION TYPE OF IMPLEMENTATION TYPE OF ALGORITHM CONSISTENCY MODEL GRANULARITY UNIT COHERENCE POLICY 

IVY 

Mermaid 

Munin 

Midway 

TreadMarks 

Blizzard 

Mirage 
Clouds 

Linda 

Orca 

~. 

User-level library 
t OS modification 

User-level library 
t OS modifications 

Runtime system t linker 
t library t preprocessor 
t OS modifications 

Runtime system 
t compiler 

User-level 

User-level t OS kernel 
modification 

OS kernel 
OS, out of kernel 

Language 

Language 

MRSW 

MRSW 

Type-specif ic 
(SRSW, MRSW, 
MRMW) 

MRMW 

MRMW 

MRSW 

MRSW 
MRSW 

MRSW 

MRSW 

Sequential 

Sequential 

Release 

Entry, release, 
processor 

Lazy release 

Sequential 

Sequential 
Inconsistent, 

sequential 

Sequential 

Synchronization 
dependent 

1 Kbyte 

1 Kbyte, 8 Kbytes 

Variable size objects 

4 Kbytes 

4 Kbytes 

32-1 28 bytes 

51 2 bytes 
8 Kbytes 

Variable (tuple size) 

Shared data 
object size 

Invalidate 

Invalidate 

Type-specific 
(delayed 
update, 
invalidate) 

Update 

Update, 

Invalidate 
invalidate 

Invalidate 
Discard 

segment when 
unlocked 

Implementation- 
dependent 

Update 

such systems introduce severe problems in passing com- 
plex data structures, and process migration in multiple 
address spaces is aggravated. Therefore, the idea of 
building a software mechanism that provides the shared- 
memory paradigm to the programmer on the top of 
message passing emerged in the mid-eighties. Gener- 
ally, this can be achieved in user-level, run-time library 
routines, the OS, or a programming language. 

Some DSM systems combine the elements of these 
three approaches. Larger grain sizes (on the order of a 

kilobyte) are typical for software solutions, because 
DSM management is usually supported through virtual 
memory. Thus, if the requested data is absent in local 
memory, a page-fault handler will retrieve the page 
either from the local memory of another cluster or from 
disk. Coarse-grain pages are advantageous for applica- 
tions with high locality of references, and also reduce 
the necessary directory storage. But, parallel programs 
characterized with fine-grain sharing are adversely 
affected, because of false sharing and thrashing. 
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Table B. Munin‘s type-specific 
memory coherence. 

DATA OBJECT TYPE 

Private 
Write-once 
Write-many 
Results 
Synchronization 
Migratory 
Producer-consumer 

Read-mostly 
General read-write 

COHERENCE MECHANISM 

None 
Replication 
Delayed update 
Delayed update 
Distributed locks 
Migration 
Eager object 

movement 
Broadcast 
Ownership 

page to its user-level fault handler. 
Because of the heterogeneity of clus- 
ters, in addition to data exchange, the 
need for data conversion arises. 

For user-defined data types, besides 
the conversion of standard data types, 
the user must provide conversion rou- 
tines and a table mapping data types to 
particular routines. Just one data type 
is allowed per page. Mermaid ensures 
the variable page size suited to data 
access patterns. Because Firefly is a 
shared-memory multiprocessor, it 
allows comparisons of physical versus 
distributed shared memory, which 
shows that the speedup increases less 
then 20% when moving from DSM to 
physically shared memory for up to four 
nodes. Because the conversion costs are 
substantially lower than page-transfer 
costs, the introduced overhead caused 
by heterogeneity is acceptably low-the 
page fault delay for the heterogeneous 
system and the homogeneous system 
with only Firefly multiprocessors is very 
comparable. 

Munin  
The Munin3 DSM system includes two 
important features: type-specific coher- 
ence mechanisms and the release con- 

sistency model. The 16-processor 
prototype is implemented on an 
Ethernet network of Sun-3 work- 
stations. Munin is based on the 
Unix system V kernel and the 
Presto parallel-programming envi- 
ronment. It is a runtime system 
implementation, although it also 
requires a preprocessor that con- 
verts the program annotations, a 
modified linker, some library rou- 
tines, and OS support. It employs 
different coherence protocols well- 
suited to the expected access pat- 
tern for a shared-data object type , _ _  
(see Table B). 

The programmer must provide one 
of several annotations for each shared 
object that selects appropriate low-level 
parameters of coherence protocol for 
this object. The data object directory is 
distributed among nodes and organized 
as a hash table. The release consistency 
model is implemented in software with 
delayed update queues for efficient 
merging and propagating write se- 
quences. Evaluation using two Munin 
representative programs (with only 
minor annotations) shows that their 
performance is less than 10% worse 
compared to their carefully hand-coded 
message-passing counterparts. 

TreadMa rks 
Another DSM implementation that 
counts on significant data traffic reduc- 
tion by relaxing consistency semantics 
according to the lazy release consis- 
tency model is TreadMarks.4 This user- 
level implementation relies on Unix 
standard libraries for remote process 
creation, interprocess communication, 
and memory management. Therefore, 
no modifications to the OS kernel or 
particular compiler are required. 
TreadMarks runs on commonly avail- 
able Unix systems. It employs an inval- 

idation-based protocol that allows mul- 
tiple concurrent writers to modify the 
page. 

On the first write to a shared page, 
DSM software makes a copy (twin) for 
later comparison with the current copy 
of the page to make a dif-a record 
containing all modifications to the page. 
Lazy release consistency does not 
require diff creation on each release (as 
in the Munin implementation), but 
allows it to be postponed until the next 
acquire to get better performance. 
Experiments using DECstation-5000/ 
240’s connected by a 100-Mbps ATM 
network and a 10-Mbps Ethernet 
reported good speedups for five Splash 
programs.5 Experimental results show 
more efficient communication inter- 
faces can overcome latency and band- 
width limitations, thus further narrow- 
ing the gap between software DSM 
systems and supercomputers. 

Midway 
Unlike Munin, which uses various 
coherence protocols on a type-specific 
basis to implement a single consistency 
model (release consistency), Midway 
supports multiple consistency models 
(processor, release, and entry) that can 
change dynamically in the same pro- 
gram.6 Midway operates on a cluster of 
MIPS R3000-based DEC stations, 
under the Mach OS. At the program- 
ming language level, all shared data 
must be declared and explicitly associ- 
ated with at  least one synchronization 
object, also declared as an instance of 
one of Midway’s data types, which 
include locks and barriers. If the neces- 
sary labeling information is included 
and all accesses to shared data are done 
with appropriate explicit synchroniza- 
tion accesses, sequential consistency is 
also available. 

(Continued on page 70) 

Software support for DSM is generally more flexible 
than hardware support and enables better tailoring of 
the consistency mechanisms to the application behav- 
ior. However, it usually cannot compete with hardware 
implementations in performance. Apart from introduc- 
ing hardware accelerators to solve the problem, design- 
ers also concentrate on relaxing the consistency model, 
although this can put an additional burden on the pro- 
grammer. Because research can rely on widely available 
programming languages and OSs on the networks of 

workstations, numerous implementations of software 
DSM have emerged. 

T h e  “Software DSM implementations” sidebar 
describes some of the better-known representations. 

Ha rdwa re-level DSM implementations 
Hardware-implemented DSM mechanisms ensure 
automatic replication of shared data in local memories 
and processor caches, transparently for software layers. 
This approach efficiently supports fine-grain sharing. 
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(Continued from page 69) 

Midway consists of three components: 
a set of keywords and function calls used 
to annotate a parallel program, a com- 
piler that generates code that marks 
shared data as dirty when written to, and 
a runtime system that implements sev- 
eral consistency models. Runtime sys- 
tem procedure calls associate synchro- 
nization objects to runtime data. The 
control of versions of synchronization 
objects is done using the associated time 
stamps, which reset when data is modi- 
fied. For all consistency models, Midway 
uses an update mechanism. Although 
less efficient with an Ethernet connec- 
tion, Midway shows close-to-linear 
speedups of chosen applications when 
using an ATM network. 

Blizzard 
Another user-level DSM implementa- 
tion that also requires some modifica- 
tions to the OS kernel, Blizzard uses 
Tempest-a user-level communication 
and memory interface that provides 
mechanisms necessary for both fine- 
grained shared memory and message 
passing.’ It comes in three variants: 
Blizzards, Blizzard-E, and Blizzard-ES. 
Blizzard-S, an entirely software variant, 
is essentially the modification of exe- 
cutable code by the insertion of a fast 
routine before each shared-memory 
reference. It is intended for state 
lookup and access control for the block. 
If the state check requires some action, 
an appropriate user handler invokes. 

Blizzard-E uses the machine’s mem- 
ory error correction code bits to indi- 
cate the block’s invalid state by forcing 
uncorrectable errors. However, this 
version maintains the read-only state by 

enforcing read-only protection on the 
page level by the memory-management 
unit. Otherwise, it assumes read-write 
permission. 

Blizzard-ES combines the ECC 
approach of Blizzard-E for read instruc- 
tions and software tests of Blizzard-S 
for write instructions. Performance 
evaluation of the three variants for 
several shared-memory benchmarks 
reveals that Blizzard-S is the most effi- 
cient (typically within a factor of two). 
When compared to hardware DSM 
implementation with fine-grain access 
control-the KSRl multiprocessor- 
Blizzard’s typical slowdown is several 
times, depending on the application. 

OPFBATING SXSTEM SOF’IWARE 
IMPLEMENTATIONS 
Mirage implements coherence mainte- 
nance inside the OS kernel.8 The pro- 
totype consists of VAX 11/750s con- 
nected by Ethernet network, using the 
System Vinterface. Mirage’s main con- 
tribution is in guaranteeing page own- 
ership for a fixed period of time, called 
the time window, D. This technique 
avoids thrashing and better exploits 
inherent processor locality. The value 
of D can be tuned statically or dynam- 
ically. Mirage uses the model based on 
page segmentation. A process that cre- 
ates a shared segment defines its size, 
name, and access protection, while the 
other processes locate and access the 
segment by name. 

In Mirage, all requests go to the site 
of the segment creation, called the 
library site (see Figure A), where they 
queue and process sequentially. The 
Clock site, which provides the page’s 
most recent copy, is either a writer or 

one of the readers of the requested 
page, because the writer and the read- 
ers cannot process the copies of the 
same page simultaneously. Perfor- 
mance evaluation on the worst-case 
example, in which two processes inter- 
changeably perform writes to the same 
page, has shown that the throughput 
increase is highly sensitive to proper 
choice of the parameter D value. 

Clouds, an OS that incorporates soft- 
ware-based DSM management, imple- 
ments a set of primitives either on top 
of Unix, or in the context of the object- 
based OS kernel Ra.9 Clouds was 
implemented on Ethernet-connected 
Sun-3 workstations. The DSM consists 
of objects composed of segments that 
have access attributes: read-only, read- 
write, weak-read, or none. Because the 
weak-read mode allows the node to get 
a copy of the page with no guarantee 
that the page will not be modified dur- 
ing read, memory system behavior of 
Clouds without any specific restrictions 
leads to inconsistent DSM. Fetching of 
segments relies on get and discard oper- 
ations provided by a DSM controller. 

This software module also offers P 
and V semaphore primitives as separate 
operations. The DSMC is, therefore, a 
part of the Clouds OS, but imple- 
mented outside its kernel Ra. It is 
invoked by a DSM partition that han- 
dles segment requests from both Ra and 
user objects, and determines whether 
the request for segment should be sat- 
isfied locally by disk partition, or 
remotely by the distributed shared- 
memory controller. Both DSM and 
DSMC partitions also reside on top of 
Unix, with minor changes caused by the 
OS dependencies. 

T h e  nonstructured, physical unit of replication and 
coherence is small, typically a cache line. Consequently, 
hardware DSM mechanisms usually represent an exten- 
sion of the principles found in cache-coherence schemes 
of scalable shared-memory architectures. This approach 
considerably reduces communication requirements, 
because finer sharing granularities minimize the detri- 
mental effects of false sharing and thrashing. Searching 
and directory functions implemented in hardware are 
much faster than with software-level implementations, 
and memory-access latencies decrease. However, 
advanced coherence-maintenance and latency-reduction 
techniques usually complicate design and verification. 
Therefore, hardware DSM is often used in high-end 

machines where performance is more important than 

See the “Hardware DSM implementations” sidebar 
for a description of three especially interesting groups 
of hardware DSM systems. 

cost. 

Hybrid-level DSM implementations 
During the evolution of this field, the research com- 
munity proposed numerous entirely hardware or soft- 
ware implementations of the DSM mechanism. How- 
ever, even in entirely hardware DSM approaches, there 
are software-controlled features explicitly visible to the 
programmer for memory reference optimization-for 
example, prefetch, update, and deliver in Dash; and 
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Figure A. Write request for the page in Mirage. 

PROGRAMMING M G U A G E  
IMPLEMENTAmONS 
Distributed shared memory in Linda is 
organized as a “tuple space”-a com- 
mon pool of user-defined tuples (basic 
storage and access units consisting of 
data elements) that are addressed by 
logical names.1° Linda, an architecture- 
independent language, provides several 
special language operators for dealing 
with such distributed data structures, 
like inserting, removing, and reading 
tuples. It avoids the consistency prob- 
lem: a tuple must be removed from the 
tuple space before an update, and the 
modified version is reinserted. 

By its nature, the Linda environment 
offers possibilities for process decou- 
pling, transparent communication, and 
dynamic scheduling. Linda offers repli- 
cation for problem partitioning. Linda 
was implemented on shared-memory 
machines (Encore Multimax, Sequent 
Balance) as well as on loosely coupled 
systems (S/Net, Ethernet network of 
MicroVaxes). 

Henri E. Bal and Andrew S. Tannen- 

baum extensively 
discuss software 
DSM implemen- 
tations. They 
propose a new 
model of shared 
data objects @as- 
sive objects ac- 
cessible through 
predefined oper- 
ations), used in 
Orca language 
for distributed 
programming. 
The distributed 
implementation 

relies on selective replication, migration, 
and an update mechanism. Different vari- 
ants of the update mechanism are avail- 
able, depending on the type of commu- 
nication provided by the underlying 
distributed system (point-to-point mes- 
sages, reliable, and unreliable multicast 
messages). Orca is predominantly 
intended for application programming. 
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prefetch and poststore in KSR1. Many purely software 
solutions, however, require some hardware support- 
such as virtual memory management hardware in IVY 
and ECC in Blizzard-E. As to be expected, neither the 
entirely hardware nor entirely software approach has all 
the advantages. Therefore, it is quite natural to employ 
hybrid methods, with predominantly o r  partially com- 
bined hardware and software elements, to balance the 
cost-to-complexity trade-offs. 

T h e  “Hybrid-level implementations” sidebar sum- 
marizes some of these tradeoffs. 

MEMORY CONSISTENCY MODELS 
T h e  memory consistency model defines the legal 

ordering of memory references issued by a processor, 
as observed by other  processor^.^^^^ Different types of 
parallel applications inherently require various con- 
sistency models. T h e  model’s restrictiveness largely 
influences system performance in executing these 
applications. Stronger forms of the consistency model 
typically increase memory access latency and band- 
width requirements, while simplifying programming. 
Looser constraints in more relaxed models, which 
allow memory reordering, pipelining, and overlap- 
ping, consequently improve performance, at the 
expense of higher programmer involvement in syn- 
chronizing shared data accesses. For optimal behavior, 
systems with multiple consistency models adaptively 
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Hardware DSM 
implementations 
According to the memory system archi- 
tecture, three groups of hardware DSM 
systems are especially interesting: 

cache coherent nonuniform mem- 
ory architectures (CC-NUMA), 
cache-only memory architectures 
(COMA), and 
reflective memory system (RMS). 

CC-NUMA DSM SYSTEMS 
A CC-NUMA system (see Figure B) 
statically distributes the shared virtual 
address space across local memories of 
clusters, which both local processors 
and processors from other clusters in 
the system can access, although with 
quite different access latencies. The 
DSM mechanism relies on directories 
with organization varying from a full 
map to different dynamic structures, 
such as singly or doubly linked lists and 
trees. The main effort is to achieve high 
performance (as in full-map schemes) 
and good scalability provided by reduc- 
ing the directory storage overhead. T o  
minimize latency, static partitioning of 
data should be done carefully, to maxi- 
mize the frequency of local accesses. 

Performance indicators also 
depend highly on the intercon- 
nection topology. The invali- 
dation mechanism is typically 
applied to provide consistency, 
while some relaxed memory 
consistency model can serve as 
a source of performance im- 
provement. Typical represen- 
tatives of this approach are 
Memnet, Dash, and SCI (see 
Table C.) 

Memnet 
This ring-based multiproces- 
sor-Memory as Network 
Abstraction-was one of the 
earliest hardware DSM systems.' The 
main goal was to avoid costly inter- 
processor communication via messages 
and to provide an abstraction of shared 
memory to an application directly by 
the network, without kernel OS inter- 
vention. The Memnet address space 
maps onto the local memories of each 
cluster (the reserved area) in a NUMA 
fashion. Another part of each local 
memory is the cache area, which is used 
for replication of 32-byte blocks whose 
reserved area is in some remote host. 
The coherence protocol is imple- 

Figure B. CC-NUMA memory architecture. 

mented in hardware state machines of 
the Memnet device in each cluster-a 
dual port memory controller on its local 
bus and an interface to the ring. 

On a miss in local memory, the 
Memnet device sends an appropriate 
message, which circulates on the ring. 
Each Memnet device on the ring 
inspects the message in a snooping 
manner. The nearest cluster with a valid 
copy satisfies the request by inserting 
requested data in the message before 
forwarding. The write request to a 
nonexclusive copy results in a message 

Table C. Hardware DSM implementations. 

IMPLEMENTATION CLUSTER CONFIGURATION NETWORK TYPE OF ALGORITHM CONSISTENCY MODEL GRANULARITY UNIT COHERENCE WLICY 

Memnet Single processor, Token ring MRSW Sequential 32 bytes Invalidate 

Invalidate Dash SGI 4D/340 (4 PES, Mesh MRSW Release 16 bytes 

SCI Arbitrary Arbitrary MRSW Sequential 16 bytes Invalidate 
KSR1 64-bit custom PE, Ring-based MRSW Sequential 128 bytes Invalidate 

Memnet device 

2-L caches), local 
memory 

ItD caches, 32M hierarchy 
local memory 

DDM 4 MC8811 Os. 2 caches, Bus-based MRSW Sequential 16 bytes Invalidate 
8-32M local memory hierarchy 

256M local memory 

Merlin 40-MIPS computer Mesh MRMW Processor 8 bytes Update 
RMS 1-4 processors, caches, RM bus MRMW Processor 4 bytes Update 

~- _. ____ 

applied to  appropriate data types have recently 
emerged. and entry consistency. 

Stronger memory consistency models that treat syn- 
chronization accesses as ordinary read and write oper- 
ations are sequential and processor consistency. More 
relaxed models that distinguish between ordinary and 

synchronization accesses are weak, release, lazy release, 

Sequential consistency mandates that all a system's 
processors observe the same interleaving of reads and 
writes issued in sequences by individual processors. A 
simple implementation of this model is a single-port 

1 
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by the directory as hold- 
ing the copy of the block). 

Coherence maintenance is 
based on a full-map directory 
protocol. A memory block 
can be in one of three states: 
uncached (not cached outside 
the home cluster), cached 
(one or more unmodified 
copies in remote clusters), or 
dirty (modified in some 
remote cluster). Usually, 
because of the property of 
locality, references can be 

Figure C. COMA memory architecture. satisfied in the local cluster. 

that invalidates other shared copes as it 
passes through each Memnet device 
having a valid copy of that block. 
Finally, the interface of the cluster that 
generated the message receives and 
removes it from the ring. 

Dash 
Directory Architecture for Shared 
Memory, a scalable cluster multi- 
processor architecture using a direc- 
tory-based hardware DSM mecha- 
nism.2 Each 4-processor cluster 
contains an equal part of the overal sys- 
tem’s shared memory (home property) 
and corresponding directory entries. 
Each processor also has a two-level pri- 
vate cache hierarchy where the loca- 
tions from other clusters’ memories 
(remote) can be replicated or migrated 
in 16-byte blocks (unlike Memnet, 
where a part of local memory is used for 
this purpose). The memory hierarchy 
of Dash is split into four levels: 

processor cache, 
caches of other processors in the 
local cluster, 
home cluster (the cluster that con- 
tains directory and physical memory 
for a given memory block), 
remote cluster (the cluster marked 

Otherwise, a request goes to 
the home cluster for the 

involved block, which takes some action 
according to the state found in its direc- 
tory. A relaxed memory consistency 
model-release consistency-improves 
performance, as do memory-access 
optimizations. Techniques for reduc- 
ing memory latency, such as software 
controlled prefetching, update and 
deliver operations, also improve per- 
formance. Dash provides hardware sup- 
port for synchronization. 

SCI 
Memory organization in an Scalable 
Coherent Interface-based CC-NUMA 
DSM system is similar to Dash, and 
data from remote memories can be 
cached in local caches. However, the 
IEEE P1596 SCI represents an inter- 
face standard, rather than a complete 
system design.) Among other issues, it 
defines a scalable directory cache- 
coherence protocol. Instead of central- 
izing the directory, SCI distributes it 
among those caches currently sharing 
the data, in the form of doubly linked 
lists. The directory entry is a shared 
data structure that multiple processors 
may concurrently access. The home 
memory controller keeps only a pointer 
to the head of the list and a few status 
bits for each cache block, while the local 

cache controllers must store the for- 
ward and backward pointers, and the 
status bits. 

A read miss request is always sent to 
the home memory. The memory con- 
troller uses the requester identifier from 
the request packet to point to the new 
head of the list. The old head pointer 
goes back to the requester along with 
the data block (if available). The 
requester uses it to chain itself as the 
head of the list, and to request the data 
from the old head (if not supplied by the 
home cluster). In the case of a write to 
a nonexclusive block, the request for the 
ownership also goes to the home mem- 
ory. All copies in the system are invali- 
dated by forwarding an invalidation 
message from the head down the list, 
and the requester becomes the new 
head of the list. However, the distribu- 
tion of individual directory entries 
increases the latency and complexity of 
the memory references. T o  reduce 
latency and to support additional func- 
tions, the SCI working committee has 
proposed some enhancements such as 
converting sharing lists to sharing trees, 
request combining, and support for 
queue-based locks. 

COMA DSM SYSTEMS 
The COMA architecture (see Figure C) 
uses local memories of the clusters as 
huge caches for data blocks from virtual 
shared address spaces (attraction mem- 
ories). There is no physical memory 
home location predetermined for a par- 
ticular data item, and it can be repli- 
cated and migrated in attraction mem- 
ories on demand. Therefore, the 
distribution of data across local memo- 
ries and caches adapts dynamically to 
the application’s behavior. 

COMA architectures have hierarchi- 
cal network topologies that simplify two 
main problems in this type of system: 
locating a data block and replacement. 
They are less sensitive to static distrib- 
ution of data than are NUMA archi- 

(Continued on page 74) 

shared-memory system that enforces serialized access 
servicing from a single first-in, first-out (FIFO) queue. 
DSM systems achieve a similar implementation by seri- 
alizing all requests on a central server node. Neither case 
allows bypassing of read and write requests from the 
same processor. Conditions for sequential consistency 

hold in the majority of bus-based, shared-memory 
multiprocessors, as well as in early DSM systems, such 
as Tvy and Mirage. 

Processor consistency assumes that the order in which 
different processors can see memory operations need 
not be identical, but all processors must observe the 
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(Continued from page 73) 

tectures. Because of their cache organi- 
zation, attraction memories efficiently 
reduce capacity and conflict miss rates. 
But, the hierarchical structure imposes 
slightly higher communication and 
remote-miss latencies. Somewhat in- 
creased storage overhead for keeping 
the information typical for cache mem- 
ory is also inherent to the COMA archi- 
tecture. The two most relevant repre- 
sentatives of COMA systems are the 
KSRl and DDM. 

KSRl 
The KSRl multiprocessor represents 
one of the early attempts to make DSM 
systems available on the market." It 
consists of a ring-based hierarchical 
organization of clusters, each with a 
local 32-Mbyte cache. The unit of allo- 
cation in local caches is a page (16 
Kbytes), while the unit of transfer and 
sharing in local caches is a subpage (128 
bytes). 

The dedicated hardware responsi- 
ble for locating, copying, and main- 
taining coherence of subpages in local 
caches is called the Allcache engine, 
which is organized as a hierarchy with 
directories on intermediate levels. 
This engine transparently routes the 
requests through the hierarchy. 
Missed accesses are most likely to be 
satisfied by clusters on the same or 
next higher level in the hierarchy. In 
that way, the Allcache organization 
minimizes the path to locate a partic- 
ular address. 

The coherence protocol is invalida- 
tion-based. Possible states of a subpage 
in a particular local cache are exclusive 
(only valid copy), nonexclusive (owner; 
multiple copies exist), copy (nonowner; 
valid copy), and invalid (not valid, but 
allocated subpage). Besides these usual 
states, KSRl provides the atomic state 

for synchronization. Locking and 
unlocking the subpage are achieved with 
special instructions. As in all architec- 
tures with no main memory where all 
data are stored in the caches, the prob- 
lem of the replacement of cache lines 
arises. There is no default destination 
for the line in the main memory, so the 
choice of a new destination and the 
directory update can be complicated and 
time-consuming. Besides that, propa- 
gation of requests through hierarchical 
directories cause longer latencies. 

DDM 
The Data Diffusion Machine prototype 
is made of 4-processor clusters with an 
attraction memory and an asynchro- 
nous split-transaction bus.5 Attaching a 
directory on top of the local DDM bus, 
to enable its communication with a 
higher-level bus of the same type, 
allows a large system with directory- 
and bus-based hierarchy (as opposed to 
the KSRl ring-based hierarchy). The 
directory is a set-associative memory 
that stores the state information for all 
items in attraction memories below it, 
but without data. 

A snoopy write-invalidate coherence 
protocol handles the attraction of data 
on read, erases the replicated data on 
write, and manages the replacement 
when a set in an attraction memory is 
full. An item can be in seven states. 
Three correspond to invalid, exclusive, 
and valid, typical for the snoopy proto- 
cols. Replacing the dirty state is a set of 
four transient states needed to remem- 
ber the outstanding requests on the 
split-transaction bus. Transactions that 
cannot be completed on a lower level 
go through the directory to the level 
above. Similarly, the directory recog- 
nizes the transactions that need to be 
serviced by a subsystem and routes 
them onto the level below it. 

mCl'M? MEMORY DSM 
SYSTEMS 
Reflective memory systems have a 
hardware-implemented update mech- 
anism a t  a fine data granularity. The 
global shared address space is formed 
out of the segments in local memories, 
which are designated as shared and 
mapped to this space through pro- 
grammable mapping tables in each clus- 
ter (see Figure D). Hence, the parts of 
this shared space are selectively repli- 
cated ("reflected") across different clus- 
ters. Coherence maintenance of shared 
regions is based on the full-replication 
MRMW algorithm. To keep it updated 
in a nondemand, anticipatory manner, 
each write to an address in this shared 
address space in a cluster propagates 
through a broadcast or multicast to all 
other clusters where the same address 
is mapped into. 

The processor does not stall on 
writes, and computation overlaps with 
communication. This is a source of per- 
formance improvement typical for 
relaxed memory consistency models. 
Also, there is no contention and long 
latencies as in typical shared-memory 
systems, because unrestricted access to 
shared data and simultaneous accesses 
to local copies are ensured. But, all 
reads from the shared memory are 
local, with a deterministic access time. 
The principle of this DSM mechanism 
closely resembles the write-update 
cache-coherence protocols. Typical 
reflective memory systems are RMS 
and Merlin. 

RMS 
Several systems with different clusters 
and network topologies apply reflective 
memory. Because broadcast is the most 
appropriate mechanism for updating 
replicated segments, the shared-bus 
topology is especially convenient for the 

sequence of writes issued by each processor in the same 
sequence. Unlike sequential consistency, processor con- 
sistency implementations allow reads to bypass writes 
in queues from which memory requests are serviced. 
Examples of systems that guarantee processor consis- 
tency are VAX 8800, Plus, Merlin, and RMS. 

Weak consistency distinguishes between ordinary and 
synchronization memory accesses. It requires that mem- 
ory becomes consistent only on synchronization 
accesses. In this model, requirements for sequential con- 
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sistency apply only to synchronization accesses. A syn- 
chronization access also must wait for all previous 
accesses to execute, while ordinary reads and writes must 
wait only for completion of previous synchronization 
accesses. Sun's Sparc architecture uses a variant of the 
weak consistency model. 

Release consistency further divides synchronization 
accesses to acquire and release, so that protected ordi- 
nary shared accesses can execute between acquire- 
release pairs. In this model, ordinary read or write access 
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the interconnection network to all 
shared copies in other local memories. 
Merlin supports two types of sharing in 
hardware: synchronous (updates to the 
same region are routed through a spe- 
cific canonical cluster) and rapid 
(updates are propagated individually by 
the shortest routes). This system also 
addresses the synchronization, inter- 
rupt, and lock handling integrated with 
reflective memory sharing. Merlin also 
provides a support for heterogeneous 
processing. 

Figure D. Reflective memory DSM architecture. 

reflective memory architecture. The 
Encore Computer Corporation devel- 
oped a number of bus-based RMSs for 
a wide range of applications-for exam- 
ple, the Encore Infinity.6 

These systems typically consist of a 
lower number of minicomputer clusters 
connected by the RM bus, a write-only 
bus because traffic on it only consists of 
word-based distributed write transfers 
(address +value of the data word). Later 
enhancements (Memory Channel) also 
allow for block-based updates. The 
replication unit is a 8-Kbyte segment. 
Segments are treated as windows that 
can be open (mapped into reflective 
shared space) or closed (disabled for 
reflection and exclusively accessed by 
each particular cluster). A replicated 
segment can map to different addresses 
in each cluster. Therefore, the transla- 
tion map tables are provided separately 
for the transmit (for each block of the 
local memory) and receive (for each 

block of the reflected address space) 
sides. 

Merlin 
Although very convenient for broad- 
casting, bus-based systems are notori- 
ous for their restricted scalability. 
Hence, the Merlin (Memory Routed, 
Logical Interconnection Network) rep- 
resents a reflective memory-based 
interconnection system using mesh 
topology with low-latency memory 
sharing on the word basis.’ 

Besides user-specified sharing infor- 
mation, OS calls are necessary to ini- 
tialize routing maps and establish data- 
exchange patterns before program 
execution. The Merlin interface in the 
host backplane monitors all memory 
changes, and on each write to the local 
physical memory mapped as shared, it 
makes a temporary copy of the address 
and the written value noninvasively. 
Instead of broadcast as in RMS, multi- 
cast transmits the word packet through 
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can execute only after all previous acquires on the same 
processor execute. In addition, a release can execute only 
after all previous ordinary reads and writes on the same 
processor execute. Finally, acquire and release syn- 
chronization accesses must fulfill the requirements that 
processor consistency puts on ordinary read and write 
accesses. T h e  Dash and Munin DSM systems exhibit 
different implementations of release consistency. 

Lazy release consistency is an enhancement of release 
consistency. Instead of propagating modifications to 

the shared address space on each release (like in release 
consistency-sometimes called eager consistency), modi- 
fications wait until the next relevant acquire. Also, not 
all modifications must propagate on the acquire, but 
only those associated with the chain of preceding syn- 
chronization operations on that specific lock. This min- 
imizes the amount of data exchanged, while also reduc- 
ing the number of messages by combining modification 
with lock acquires in one message. T h e  Treadmarks 
DSM system implements lazy release consistency. 
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Hybrid DSM 
implementations 

Table D provides an overview of the 
hybrid-level DSM implementations. 

PLUS 
A typical hybrid approach achieves data 
replication and migration from a shared 
virtual address space across the clusters 
in software, while implementing coher- 
ence management in hardware. Plus is 
such a system.* In Plus, software han- 
dles data placement and replacement in 
local memories in units of 4-Kbyte 
pages. However, memory coherence 
for replicated data resides on the 32- 
bit word basis by a nondemand, 
write-update protocol implemented in 
hardware. Replicated instances of a 
page are chained into an ordered singly 
linked list, headed with the master copy, 
to ensure the propagation of updates to 
all copies. Because a relaxed consistency 
model is assumed, writes are nonblock- 
ing, and thefence operation is available 
to the user for explicit strong ordering 
of writes. T o  optimize the synchro- 
nization, Plus provides a set of special- 
ized interlocked read-modify-write 
operations called delayed operations. 
Plus hides their latency by splitting 
them into issue and veri& phases, thus 
allowing them to proceed concurrently 
with regular processing. 

GAIACTICA NET 
Galactica Net solves some DSM issues 
in a manner similar to Plus. It repli- 

cates pages from the virtual address 
space on demand under control of vir- 
tual memory software, implemented in 
the Mach OS. It also provides hard- 
ware support for a virtual memory 
mechanism, realized through a block 
transfer engine, that can rapidly trans- 
fer pages in reaction to page faults. A 
page can be in one of three states: read- 
only, private, and update, denoted by 
tables maintained by the OS. A write- 
update protocol, implemented entirely 
in hardware, keeps the coherence for 
writeable shared pages (update mode). 

All copies of a shared page in the 
update state are organized in a virtwtl 
sharing ring-a linked list used for for- 
warding of updates. Virtual shared 
rings are realized using update routing 
tables kept in each cluster’s network 
interface, which are also maintained by 
software. Therefore, write references 
to pages in update state are detected 
by hardware and propagated accord- 
ing to the table. Because of the update 
mechanism, for some applications, 
broadcast of excessive updates can pro- 
duce a large amount of traffic. Also, the 
unit of sharing is quite large, and false 
sharing effects can degrade perfor- 
mance. Upon recognizing an actual 
reference pattern, Galactica Net can 
dynamically switch from the hardware 
update scheme to software invalidate 
coherence (another hybrid and adap- 
tive feature), using a competitive pro- 
tocol based on per-page update coun- 
ters. When remote updates to a page 
far exceed local references, an inter- 
rupt is raised, and the OS invalidates 

this page and removes it from its shar- 
ing ring to prevent the unnecessary 
traffic to unused copies. 

MITALEwIFlc! 
This system implements the Limit- 
LESS directory protocol, whch repre- 
sents a hardware-based coherence 
scheme supported by a software mech- 
a n i ~ m . ~  T o  reduce storage require- 
ments, directory entries contain only a 
limited number of hardware pointers, 
which should be sufficient in a vast 
majority of cases. Software handles 
exceptional circumstances, when more 
pointers are needed. In those infre- 
quent cases, an interrupt is generated, 
and a full-map directory for the block 
is emulated in software. A fast-trap 
mechanism supports this feature, and 
a multiple-context concept hides the 
memory latency. This approach’s main 
advantage is that the applied directory 
coherence protocol is storage-efficient, 
while performing about as well as the 
full-map directory protocol. 

FLASH 
Unlike Alewife, the Flash multi- 
processor implements the memory 
coherence protocol in software, but 
shifts its execution burden from the 
main processor to an auxiliary proto- 
col processor-Magic (Memory and 
General Interconnection C~ntroller).~ 
This specialized programmable con- 
troller efficiently executes protocol 
actions in a pipelined manner, avoid- 
ing context switches on the main 
processor. Other systems, such as the 

Table D. Hybrid-level DSM implementations. 

CLUSTER CONFIGURATION 
NAME + NETWORK TYPE OF ALGORITHM CONSISTENCY MODEL GRANULARITY UNIT COHERENCE POLICY 

Plus M88000,32K cache, MRMW 

Galactica Net 4 M8811 Os, 2-L caches MRMW 

Alewife Sparcle PE, 64K cache, MRSW 

8-32M local memory, mesh 

256M local memory, mesh 

4M local memory, CMMU, 
mesh 

Magic controller, mesh 

NP controller 

Intel Paragon routing network 

Flash MIPS T5, I tD caches, MRSW 

Typhoon SuperSparc, 2-L caches, MRSW 

Shrimp 16 Pentium PC nodes, MRMW 

MRSW Hybrid DSM Flash-like 
-. ._ .- - - . . 

Processor 

Multiple 

Sequential 

Release 

Custom 

AURC, scope 

Release 

4 Kbytes Update 

8 Kbytes Update/ 

16 bytes Invalidate 
invalidate 

128 bytes Invalidate 

32 bytes Invalidate 
custom 

4 Kbytes Update/ 
invalidate 

Variable Invalidate 
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network interface processor (NP) 
in T y p h ~ o n , ~  follow this approach, 
which also ensures great flexibility in 
experimenting and testing. The NP 
processor uses a hardware-assisted dis- 
patch mechanism to invoke a user- 
level procedure to handle an event. 

SHRIMP 
The Shrimp (Scalable High-Perfor- 
mance Really Inexpensive Multi- 
processor) multicomputer also uses 
reflective memory.6 The virtual mem- 
ory-mapped network interface imple- 
ments an automatic update in hard- 
ware. In this system, after a page (send 
buffer) maps out to another page’s 
cluster memory (receive buffer) by the 
OS, each local write (message) to this 
page also immediately propagates to 
the destination automatically by hard- 
ware. The automatic update release con- 
sirtency (AURC) approach keeps only 
one copy of a page consistent using 
fine-grain automatic updates, while 
keeping other copies consistent using 
an invalidation-based software proto- 
col. Another solution for implement- 
ing DSM on the Shrimp multicom- 
puter uses the innovative concept of 
scope consistency, representing a com- 
promise between entry and lazy release 
consistency. 

OTHER HYEIRID APPROACHES 
T o  improve the performance, a hybrid 
approach called coopwative shared mew 
09 uses programmer-supplied anno- 
tations.’ Programmers identify the 
segments that use shared data with 
corresponding Check-In (exclusive or 
shared access) and Check-out (relin- 
quish) annotations, executed as mem- 
ory system directives. These perfor- 
mance primitives do not change 
program semantics (even if misap- 
plied), but reduce unintended com- 
munication caused by thrashing and 
false sharing. Cooperative prefetch can 
also serve to hide the memory latency. 
The CICO programming model is 
completely and efficiently supported 
in hardware by a minimal directory 
protocol DiqSW. Traps to the system 
software occur only on memory 
accesses that violate the CICO. 

One hybrid DSM protocol8 com- 
bines the advantages of a software pro- 
tocol for coarse-grain data regions and 
a hardware coherence scheme for fine- 

grain sharing in a tightly coupled sys- 
tem. The software part of the protocol 
is similar to Midway. The programmer 
must explicitly identify the regions- 
coarse-grain data structures. Then, 
usage annotations-for example, 
BeginReadIEndRead, Begin WritefEnd- 
Write-identify program segments 
that safely reference the data from a 
certain region (without modification 
from other processors). Library rou- 
tines invoked by these annotations 
maintain coherence of annotated data. 
A directory-based hardware protocol 
manages nonannotated data coher- 
ence. Both the protocol’s software and 
hardware components use the invali- 
dation policy. A variable-size coher- 
ence unit of the software part of the 
protocol eliminates false sharing, while 
reducing remote misses by efficient 
bulk transfers of coarse-grain data and 
their replication in local memories. 
The protocol is also insensitive to ini- 
tial data placement. As in Midway, 
Munin, and CICO, the main disad- 
vantage is the burden put on the pro- 
grammer to insert the annotations, 
although this may not be so compli- 
cated because this data-use informa- 
tion is naturally known. 

Finally, because message-passing 
and shared-memory machines have 
been converging recently, efforts are 
ongoing to integrate these two com- 
munication paradigms in a single sys- 
tem. In addition to the just-discussed 
coherence protocol, Alewife also 
allows explicit sending of messages in 
a shared-memory program. Messages 
are delivered via an interrupt and 
are dispatched in software. Besides 
the Dash-like software-implemented 
directory cache-coherence protocol, 
Flash also provides hardware support 
for message passing with low over- 
head. Flash gives the user accesses to 
block transfer without sacrificing 
protection. 

Typhoon is a proposed hardware 
implementation especially suited for 
the Tempest interface-a set of user- 
level mechanisms that can modify the 
semantics and performance of shared- 
memory operations. Tempest consists 
of four types of these mechanisms: 
low-overhead messages, bulk data 
transfers, virtual memory manage- 
ment, and fine-grain access control. 
For example, user-level transparent 

shared memory can be implemented 
using Stack-a user library with Tem- 
pest fine-grain access mechanisms. 
Stache replicates the remote data in a 
part of the cluster’s local memory 
according to a COMA-like policy. It 
maps virtual addresses of shared data 
to local physical memory at page gran- 
ularity, but maintains coherence at the 
block level. A coherence protocol sim- 
ilar to LimitLESS is implemented 
entirely in software. 
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Finally, entry consistency also improves release con- 
sistency. This model requires that each or 
variable or object be protected and associat 
chronization variable, using language-lev 
Consequently, modification of the ordinary shared vari- 
able waits until the next acquire of the associated syn- 
chronization variable that guards it. Because only the 
changes for a subset of shared variables protected by the 
particular synchronization variable must propagate at 
that moment, the traffic sipficantly decreases. Latency 
also falls because a shared access does not have to wait 
on the completion of other unrelated acquire$. Perfor- 
mance improves at  the expense of higher programmer 
involvement in specifymg synchronization information 
for each variable. The Midway DSM system first imple- 
mented entry consistency. 

Important design choices in 
building DSM systems 
In addition to the DSM algorithm, implementation level 
of DSM mechanism, and memory consistency model, 
characteristics that strongly affect overall DSM system 
performance include cluster configuration, intercon- 
nection network, structure of shared data, granularity 
of coherence unit, responsibility for the DSM manage- 
ment, and coherence policy. 

Cluster conj5gurataon 
Varylng greatly across different DSM systems, cluster 
configurauon includes one or several usually off-the- 
shelf processors. Because each processor has its own 
local cache (or even cache hierarchy), cache coherence 
on the cluster level must be integrated globally with the 
DSM mechanism. Parts of a local memory module can 
be configured as private or shared-mapped 
tual shared address space. In addition to CO 

cluster to the system, the network interface 
sometimes integrates important DSM m 
responsibilities. 

Interconnectaon networks 
Almost all types of interconnection networks found in 
multiprocessors and distributed systems will work in 
DSM systems. Most software-oriented D 
are network independent, although many 
top of Ethernet, readily available in most environments. 
But, topologies such as multilevel buses, ring hierar- 
chies, or meshes have served as platforms for hardware- 
oriented DSM systems. The interconnection network's 

topology can offer or re 
allel exchange of data re1 
For the same reasons . 
tion, it determines 
and multicast tra 
implementing D 

Shared data structure 
The  structure of shar 
out of shared address 
of data items in it. Ha 
nonstructured data objec 
tations tend to use data it 
ties, to take advantage of 
by the application. 

Coherence unit gran 
The  granularity of the 
size of the data blocks ma 
This parameter's affect 
mance relates closely 
cal for the applicatio 
systems use smaller units 
software solutions, based 
nisms, organize data in 
counting on coarse-gra 
c a k d f a h  sharing, the U 

€or directory storage, bu 
that multiple process0 
block simultaneously 
lated parts of that blo 

DSM management 
The  responsibility fo 

ment, but the central 
Designers can define 
management statically 
tlenecks and prov 
responsibility for D 
the distribution of d 

Coherence policy 
The coherence policy dete 
copies of a data item 
updated or invalidated 
the coherence policy 
data. For very fine-gra 



costs approximately the same as an invalidation mes- 
sage. Therefore, systems with word-based coherence 
maintenance often use the update policy, but coarse- 
grain systems largely use invalidation. An invalidation 
approach’s efficiency grows when the read and write 
access sequences to the same data item by various 
processors are not highly interleaved. The  best perfor- 
mance comes when the coherence policy dynamically 
adapts to observed reference patterns. 

ecause of the combined advantages of the 
shared-memory and distributed systems, 
DSM approaches appear to be a viable solu- 
tion for large-scale, high-performance sys- 
tems with a reduced cost of parallel software 

development. However, efforts to build successful com- 
mercial systems that follow the DSM paradigm are still 
in their infancy, so research prototypes still prevail. 
Therefore, DSM remains a very active research area. 
Promising research directions include 

0 improving DSM algorithms and mechanisms, and 
adapting them to the characteristics of typical appli- 
cations and system configurations, 
synergistic combining of hardware and software 
DSM implementations, 

0 integrating shared-memory and message-passing 
programming paradigms, 
creating new and innovative system architectures 
(especially in the memory system), and 

0 combining multiple-consistency models. 

From this point of view, further investments in 
exploring, developing, and implementing DSM systems 
seem to be quite justified. 
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