
Distributed Shared
Memory: Concepts
and Systems
Jelica Protit, Milo Tomasevit, and Veljko Milutinovit
University of Belgrade

In surveying
current approaches to
distributed sh ared-
memo y computing,
these authors find that
the reduced cost of
parallel software
development will he@
make the DSM
paradigm a viable
solution to large-scale,
high -performance
computing.

esearch and development of systems with multiple processors
has shown significant progress recently. These systems, needed
to deliver the high computing power necessary for satisfylng
the ever-increasing demands of today's typical applications,
,usually fall into two large classifications, according to their

memory system organization: shared- and distributed-memory systems.
A shared-memory system' (often called a tightly coupled multiproces-

sor) makes a global physical memory equally accessible to all processors.
These systems offer a general and convenient programming model that
enables simple data sharing through a uniform mechanism of reading and
writing shared structures in the common memory. Users can readily emu-
late other programming models on these systems. The programming ease
and portability of these systems cut parallel software development costs.
However, shared-memory multiprocessors typically suffer from increased
contention and longer latencies in accessing the shared memory, which
degrades peak performance and limits scalability compared to distributed
systems. Memory system design also tends to be complex.

In contrast, a distributed-memory system (often called a multicomputer)
consists of multiple independent processing nodes with local memory mod-
ules, connected by a general interconnection network. The scalable nature
of distributed-memory systems makes systems with very high computing
power possible. However, communication between processes residing on
different nodes involves a message-passing model that requires explicit use
of sendheceive primitives. Because they must take care of data distribu-
tion across the system and manage the communication, most program-
mers find this process more difficult. Also, process migration imposes prob-
lems because of different address spaces. Therefore, compared to
shared-memory systems, hardware problems are easier and software prob-
lems more complex in distributed-memory systems.

Summer 1996 1063-6552/96/$4.00 0 1996 IEEE 63

Figure 1. Structure and organization of a DSM system.

A relatively new concept-distributed shared mem-
~ry~,~-combines the advantages of the two approaches.
A DSM system logically implements the shared-memory
model on a physically distributed-memory system. Sys-
tem designers can implement the specific mechanism for
achieving the shared-memory abstraction in hardware
or software in a variety of ways. The DSM system ktdes
die remote communication mechanism from the appli-

writer, preserving the programming ease and
ility typical of shared-memory systems. DSM sys-

tems allow relatively easy modification and efficient exe-
cution of existing shared-memory system applicanons,
whch preserves software investments while maximizing
the resulting performance. In addition, the scalability
and cost-effectiveness of underlymg dismbuted-memory
systems are also inherited. Consequently, DSM systems
offer a viable choice for building efficient, large-scale
multiprocessors.

The DSM model’s ability to provide a transparent
interface and conveiuent programming envlronment for
distributed and parallel applications have made it the
focus of numerous research efforts in recent years. Cur-
rent DSM system research focuses on the development
of general approaches that minimize the average access
time to shared data, while maintaining data consistency.
Some solutions implement a specific software layer on
top of existing message-passing systems. Others extend
strategies applied in shared-memory multiprocessors
with private caches to multllevel memory

This article reviews the increasingly important area of
After first covering general DSM concepts and
ches, it surveys existing DSM systems, developed
as research prototypes or commercial products
ndards. Although not exhaustive, this survey tries

to provlde an extensive, up-to-date overview of several
key implementation schemes for maintaining data in
DSM systems.

64

General DSM

ADSM system generally involves a set of nodes or clus-
ters, connected by an interconnection network (Figur

cormectlon controller in each cl
into the system.

Information about states an
particular data blocks usually res
or directory. Directory storage
among the most important desi

storage either for the e

els exist, they usually contain on
corresponding interface control

Classz@cations of DSM systems
Since the first DSM research efforts in the mid-e

research prototypes. Designers of the early DSM sys-
tems were inspired by the principles of virtual memory,
as well as by cache-coherence maintenance in shared-
memory multiprocessors.

increasingly popular and powerful, represent the most
suitable platform for many programmers to approach
parallel computing. However, communication latency,
including operating system overhead and transfer time,
remains the main obstacle for matchmg the performance
of high-end machines with those network systems. Con-
versely, designers of shared-memory multiprocessors
strive for scalability, achieved through physical distrib-
ution of shared memory and sophisticated organization
of the overall system through such techniques as clus-
tering and hierarchical layout.

Thus, as the gap between multiprocessors and multi-
computers (that early DSM intended to bridge) narrows
and the basic ideas and performance of both classes of
systems seemingly converge, many more emerging sys-
tems fit into the large family of modern DSM. T o elim-
inate misunderstanding, we adopt a general definition
for this family, which assumes that all systems providing
a shared-memory abstraction on a distributed-memory
system belong to the DSM category.

There are three key issues when accessing data
items in the DSM address space, while keeping the
data consistent:

How the access actually executes -+ DSM algorithm.
Where the access is implemented + Implementa-
tion level of DSM mechanism.
What the precise meaning of the word consistent is +
Memory consistency model.

Networks of workstations, wh

DSM ALGORITHMS
The algorithms for implementing DSM deal with two
basic problems:

0 static and dynamic distribution of shared data across

0 prese+ng a coherent view of shared data, while min-

Two frequently used strategies for distributing shared
data are replication and migration. Replication allows
multiple copies of the same data item to reside in dif-
ferent local memories (or caches). It is mainly used to
enable simultaneous accesses by different sites to the
same data, predominantly when read sharing prevails.

Migration implies that only a single copy of a data

the system, to minimize access latency, and

imizing coherence-management overhead.

item exists a t any one time, so the data item must be
moved to the requesting site for exclusive use. T o
decrease coherence-management overhead, users pre-
fer this strategy when sequential patterns of write shar-
ing are prevalent. System designers musG choose a DSM
algorithm that is well-adapted to the system configura-
tion and characteristics of memory references in typi-
cal applications.

Classifications of DSM algorithms and the evaluation
of their performance have been extensively discu~sed.~-l~
Our presentation follows a classification of algorithms
similar to that of Michael Stumm and Songnian Zhou.*

Single readedsingle writer algorithms
This class of algorithms prohibits replication, while per-
mitting but not requiring migration. The simplest DSM
management algorithm is the central semer algorithm.8
The approach relies on a unique central server that ser-
vices all access requests from other nodes to shared data,
physically located on this node. This algorithm suffers
from performance problems because the central server
can become a bottleneck in the system. Such an orga-
nization implies no physical distribution of shared mem-
ory. A possible modification is the static distribution of
physical memory and the static distribution of respon-
sibilities for parts of shared address spaces onto several
different servers. Simple mapping functions, such as
hashing, can serve to locate the appropriate server for
the corresponding piece of data.

More sophisticated SRSW algorithms also permit
migration. However, only one copy of the data item can
exist at any one time, and this copy can migrate upon
demand. This kind of algorithm is called hotpotato.1° If
an application exhibits high reference locality, the cost
of data migration is amortized over multiple accesses,
because data moves not as individual items, but in fixed-
size uni teblocks. The algorithm can perform well
when a longer sequence of accesses from one processor
uninterrupted by accesses from other processors is
likely, and write after read to the same data occurs fre-
quently. Anyway, performance of this rarely used algo-
rithm is restrictively low, because it does not capitalize
on the parallel potential of multiple read-only copies,
when the read sharing prevails.

Multiple readedsingle writer algorithms
The main intention of MRSW (or read-replication) algo-
rithms is to reduce the average cost of read operations,
counting that read sharing is the prevalent pattern in par-
allel applications. T o this end, they allow simultaneous

Summer 1996 65

local execution of read operations at multiple hosts. Only
one host a t a time can receive permission to update a
replicated copy. A write to a writable copy increases the
cost of this operation, because the use of other replicated
stale copies must be prevented. Therefore, MRSW algo-
rithms are usually invalidatlon-based. A great many pro-
tocols follow this principle.

Algorithms in this class differ in the allocation of
DSM management responsibility. Kai Li and Paul
Hudak proposed several of them.7 Several terms need
defining before we discuss those algorithms:

Manager: the site respoiisible for organizmg the write
access to a data block,
Owner: the site that owns the only writable copy of
the data block, and
Copy set: a set of all sites that have copies of the data
block.

The algorithms proposed by Li and Hudak include:

(1) Centralzzed manager algovzthm. All read and write
requests go to the manager, which is the only site
that keeps the identity of a partlcular data block's
owner. The manager forwards the data request to
the owner, and waits for confirmation from the
requesting site, indicating that it received the copy
of the block from the owner. For a write operation,
the manager also sends invalidations to all sites from
the copy set (a vector that identifies the current
holders of the data block, kept by the manager).

(2) Improved centvalzzed manager algorithm. Unlike the
original centralized manager algorithm, the owner,
not the manager, keeps the copy set. The copy set
goes together with the data to the new owner,
which is also responsible for invalidations. Here,
decentralized synchronization improves overall
performance.

(3) Fzxed dzstvzbuted manager algorithm. In this algo-
rithm, instead of centralizing the management, each
site manages a predetermined subset of data blocks.
The distribution proceeds according to some
default mapping function. Clients can stdl override
it by supplying their own mapping, tailored to the
application's expected behavior. When a parallel
program exhibits a high rate of requests for data
blocks, this algorithm outperforms the centralized
solutlons.

(4) Efpoadcast dzstnbuted manager algoritbm. This algo-
rithm has no manager. Instead, the requesting
processor sends a broadcast message to find the data

block's true owner.

the request to the node representing
owner according to the information k
table. For every read and write re

 invalidation^.^

allows replication of data blo

write-update protocols. This algor
high coherence traffic, especially when up

be complex and demanding. One way to
consistency is to globally sequence the
uons-to implement reliable multicast.
sor attempts to write to the shared m

modification arrives at a site, it verifies the sequence
number, and if not correct, it requests a retransmission.

A modification of this algorithm distributes the
sequencing task.l’ In this solution, the server managing
the master copy of any particular data structure
sequences writes to that data structure. Although the
system is not sequentially consistent in this case, each
particular data structure is maintained consistently.

Avenues for performance improvement
Researchers have dedicated considerable effort to vari-
ous modifications of the basic algorithms, to improve
their behavior and enhance their performance by reduc-
ing the amount of data transferred in the system. Most
of those ideas were evaluated by simulation studies, and
some were implemented on existing prototype systems.

An enhancement of Li’s algorithm called the Shrewd
algorithm eliminates all unnecessary page rransfers with
the assistance of the sequence number per copy of a
page.1° On each write fault at a node with an existing
read-only copy, the sequence number goes with the
request. If this number is the same as the number kept
by the owner, the requester can access the page without
its transfer. This solution shows remarkable benefits
when the read-to-write ratio increases.

All of Li and Hudak‘s solutions assume that the page
transfer executes on each attempt to access a page that
does not reside on the accessing site. One modification
employs a competitive algorithm and allows page repli-
cation only when the number of accesses to the remote
page exceeds the replication A similar rule applies
to migration, although because only one site can have
the page in this case, the condition to migrate the page
is more restrirtive and dependent on other sites’ access
pattern to the same page. The performance of these
policies is guaranteed to stay within a constant factor
from the optimal.

The Mirage system applies another restriction to data
transfer requests, which reduces thrashing-an adverse
effect occurring when an alternating sequence of
accesses to the same page issued by different sites makes
its migration the predominant activity. The solution to
this problem defines a time window A in which the site
is guaranteed to uninterruptedly possess the page after
acquiring it. Users can tune the value of A statically or
dynamically, depending on the degree of processor
locality exhibited by the particular application.

A variety of specific algorithms have been imple-
mented in existing DSM systems or simulated exten-
sively using appropriate workload traces. Early DSM

implementations found the main source of possible per-
formance and scalability improvements in various solu-
tions for the organization and storage of system tables,
such as copy set, as well as in the distribution of man-
agement responsibilities. T o improve performance,
recent DSM implementations relax memory consistency
semantics, which requires considerable modification of
the algorithms and organization of directory informa-
tion. Implementations of critical operations using hard-
ware accelerators and a combination of invalidate and
update methods also improve modern DSM system
performance.

IMPLEMENTATION LEVEL OF THE DSM MECHANISM
The level where the DSM mechanism is implemented
is one of the most important decisions in building a
DSM system: it affects both programming and overall
system performance and cost.

T o achieve ease of programming, cost-effectiveness,
and scalability, DSM systems logically implement the
shared-memory model on physically distributed memo-
ries.12J4 Because the DSM’s shared address space dis-
tributes across local memories, a lookup must execute
on each access to these data, to determine if the requested
data is in the local memory. If not, the system must bring
the data to the local memory. The system must also take
an action on write accesses to preserve the coherence of
shared data. Both lookup and action can execute in soft-
ware, hardware, or the combination of both. According
to this property, systems fall into three groups: software,
hardware, and hybrid implementations.

T h e choice of implementation usually depends on
pricelperformance trade-offs. Although typically supe-
rior in performance, hardware implementations reqGre
additional complexity, which only high-performance,
large-scale machines can afford. Low-end systems, such
as networks of personal computers, based on commod-
ity microprocessors, still do not tolerate the cost of addi-
tional hardware for DSM, which limits them to soft-
ware implementation. For mid-range systems, such as
clusters of workstations, low-cost additional hardware,
typically used in hybrid solutions, seems appropriate.

Software DSM implementations
Until the last decade, distributed systems widely
employed message-passing communication. However,
this appeared to be much less convenient than the
shared-memory programming model because the pro-
grammer must be aware of data distribution and explic-
itly manage data exchange via messages. In addition,

Summer 1996 67

Sofiware DSM
implementations

These fall into user-level, OS, and pro-
gramming language variations.

USER-LEVEL AND COMBINED
SOFIWARE IMPLEMEN'IATIONS
Table A and the following paragraphs
summarize these implementations:
IVY, Mermaid, Munin, TreadMarks,
Midway, Blizzard, Mirage, Clouds,
Orca, and Linda.

IVY
IVY' was one of the first proposed soft-
ware DSM solutions, implemented as a
set of user-level modules built on the
top of the modified Aegis OS on the
Apollo Domain workstations. IVY con-

tains five modules. Three of them from
the client interface @recess management,
memory allocation, and initialization) con-
sist of a set of primitives that can be
used by application programs. Remote
operation and memoly mapping routines
use the OS low-level support.
IVY provides a mechanism for con-

sistency maintenance using an invali-
dation approach on 1-Kbyte pages. For
experimental purposes, three algo-
rithms for ensuring sequential consis-
tency are implemented: the improved
centralized manager, the fixed distrib-
uted manager, and the dynamic dis-
tributed manager. Performance mea-
surements on a system with up to eight
clusters have shown linear speedup
compared to the best sequential solu-
tions for typical parallel programs.
Although IVY'S performance could

have been improved by implementing
it on the system level rather than on the
user level, its most important contribu-
tion is in proving the viability of the
DSM concept on real systems with par-
allel applications.

Mermaid
An algorithm similar to IVY'S also
serves in Mermaid2-the first system to
provide DSM in a heterogeneous envi-
ronment (HDSM). The prototype con-
figuration includes S d n k worksta-
tions and DEC Firefly multiprocessors.
The DSM mechanism is implemented
a t the user level, as a library package for
linking to the application programs.
Minor changes to the SunOS OS kernel
include setting the access permission of
memory pages from the user level, as
well as passing the address of a DSM

Table A. Software DSM implementations.

IMPLEMENTATION TYPE OF IMPLEMENTATION TYPE OF ALGORITHM CONSISTENCY MODEL GRANULARITY UNIT COHERENCE POLICY

IVY

Mermaid

Munin

Midway

TreadMarks

Blizzard

Mirage
Clouds

Linda

Orca

~.

User-level library
t OS modification

User-level library
t OS modifications

Runtime system t linker
t library t preprocessor
t OS modifications

Runtime system
t compiler

User-level

User-level t OS kernel
modification

OS kernel
OS, out of kernel

Language

Language

MRSW

MRSW

Type-specif ic
(SRSW, MRSW,
MRMW)

MRMW

MRMW

MRSW

MRSW
MRSW

MRSW

MRSW

Sequential

Sequential

Release

Entry, release,
processor

Lazy release

Sequential

Sequential
Inconsistent,

sequential

Sequential

Synchronization
dependent

1 Kbyte

1 Kbyte, 8 Kbytes

Variable size objects

4 Kbytes

4 Kbytes

32-1 28 bytes

51 2 bytes
8 Kbytes

Variable (tuple size)

Shared data
object size

Invalidate

Invalidate

Type-specific
(delayed
update,
invalidate)

Update

Update,

Invalidate
invalidate

Invalidate
Discard

segment when
unlocked

Implementation-
dependent

Update

such systems introduce severe problems in passing com-
plex data structures, and process migration in multiple
address spaces is aggravated. Therefore, the idea of
building a software mechanism that provides the shared-
memory paradigm to the programmer on the top of
message passing emerged in the mid-eighties. Gener-
ally, this can be achieved in user-level, run-time library
routines, the OS, or a programming language.

Some DSM systems combine the elements of these
three approaches. Larger grain sizes (on the order of a

kilobyte) are typical for software solutions, because
DSM management is usually supported through virtual
memory. Thus, if the requested data is absent in local
memory, a page-fault handler will retrieve the page
either from the local memory of another cluster or from
disk. Coarse-grain pages are advantageous for applica-
tions with high locality of references, and also reduce
the necessary directory storage. But, parallel programs
characterized with fine-grain sharing are adversely
affected, because of false sharing and thrashing.

68 IEEE Parallel & Distributed Technology

Table B. Munin‘s type-specific
memory coherence.

DATA OBJECT TYPE

Private
Write-once
Write-many
Results
Synchronization
Migratory
Producer-consumer

Read-mostly
General read-write

COHERENCE MECHANISM

None
Replication
Delayed update
Delayed update
Distributed locks
Migration
Eager object

movement
Broadcast
Ownership

page to its user-level fault handler.
Because of the heterogeneity of clus-
ters, in addition to data exchange, the
need for data conversion arises.

For user-defined data types, besides
the conversion of standard data types,
the user must provide conversion rou-
tines and a table mapping data types to
particular routines. Just one data type
is allowed per page. Mermaid ensures
the variable page size suited to data
access patterns. Because Firefly is a
shared-memory multiprocessor, it
allows comparisons of physical versus
distributed shared memory, which
shows that the speedup increases less
then 20% when moving from DSM to
physically shared memory for up to four
nodes. Because the conversion costs are
substantially lower than page-transfer
costs, the introduced overhead caused
by heterogeneity is acceptably low-the
page fault delay for the heterogeneous
system and the homogeneous system
with only Firefly multiprocessors is very
comparable.

Munin
The Munin3 DSM system includes two
important features: type-specific coher-
ence mechanisms and the release con-

sistency model. The 16-processor
prototype is implemented on an
Ethernet network of Sun-3 work-
stations. Munin is based on the
Unix system V kernel and the
Presto parallel-programming envi-
ronment. It is a runtime system
implementation, although it also
requires a preprocessor that con-
verts the program annotations, a
modified linker, some library rou-
tines, and OS support. It employs
different coherence protocols well-
suited to the expected access pat-
tern for a shared-data object type , _ _
(see Table B).

The programmer must provide one
of several annotations for each shared
object that selects appropriate low-level
parameters of coherence protocol for
this object. The data object directory is
distributed among nodes and organized
as a hash table. The release consistency
model is implemented in software with
delayed update queues for efficient
merging and propagating write se-
quences. Evaluation using two Munin
representative programs (with only
minor annotations) shows that their
performance is less than 10% worse
compared to their carefully hand-coded
message-passing counterparts.

TreadMa rks
Another DSM implementation that
counts on significant data traffic reduc-
tion by relaxing consistency semantics
according to the lazy release consis-
tency model is TreadMarks.4 This user-
level implementation relies on Unix
standard libraries for remote process
creation, interprocess communication,
and memory management. Therefore,
no modifications to the OS kernel or
particular compiler are required.
TreadMarks runs on commonly avail-
able Unix systems. It employs an inval-

idation-based protocol that allows mul-
tiple concurrent writers to modify the
page.

On the first write to a shared page,
DSM software makes a copy (twin) for
later comparison with the current copy
of the page to make a dif-a record
containing all modifications to the page.
Lazy release consistency does not
require diff creation on each release (as
in the Munin implementation), but
allows it to be postponed until the next
acquire to get better performance.
Experiments using DECstation-5000/
240’s connected by a 100-Mbps ATM
network and a 10-Mbps Ethernet
reported good speedups for five Splash
programs.5 Experimental results show
more efficient communication inter-
faces can overcome latency and band-
width limitations, thus further narrow-
ing the gap between software DSM
systems and supercomputers.

Midway
Unlike Munin, which uses various
coherence protocols on a type-specific
basis to implement a single consistency
model (release consistency), Midway
supports multiple consistency models
(processor, release, and entry) that can
change dynamically in the same pro-
gram.6 Midway operates on a cluster of
MIPS R3000-based DEC stations,
under the Mach OS. At the program-
ming language level, all shared data
must be declared and explicitly associ-
ated with at least one synchronization
object, also declared as an instance of
one of Midway’s data types, which
include locks and barriers. If the neces-
sary labeling information is included
and all accesses to shared data are done
with appropriate explicit synchroniza-
tion accesses, sequential consistency is
also available.

(Continued on page 70)

Software support for DSM is generally more flexible
than hardware support and enables better tailoring of
the consistency mechanisms to the application behav-
ior. However, it usually cannot compete with hardware
implementations in performance. Apart from introduc-
ing hardware accelerators to solve the problem, design-
ers also concentrate on relaxing the consistency model,
although this can put an additional burden on the pro-
grammer. Because research can rely on widely available
programming languages and OSs on the networks of

workstations, numerous implementations of software
DSM have emerged.

T h e “Software DSM implementations” sidebar
describes some of the better-known representations.

Ha rdwa re-level DSM implementations
Hardware-implemented DSM mechanisms ensure
automatic replication of shared data in local memories
and processor caches, transparently for software layers.
This approach efficiently supports fine-grain sharing.

Summer 1996 69

(Continued from page 69)

Midway consists of three components:
a set of keywords and function calls used
to annotate a parallel program, a com-
piler that generates code that marks
shared data as dirty when written to, and
a runtime system that implements sev-
eral consistency models. Runtime sys-
tem procedure calls associate synchro-
nization objects to runtime data. The
control of versions of synchronization
objects is done using the associated time
stamps, which reset when data is modi-
fied. For all consistency models, Midway
uses an update mechanism. Although
less efficient with an Ethernet connec-
tion, Midway shows close-to-linear
speedups of chosen applications when
using an ATM network.

Blizzard
Another user-level DSM implementa-
tion that also requires some modifica-
tions to the OS kernel, Blizzard uses
Tempest-a user-level communication
and memory interface that provides
mechanisms necessary for both fine-
grained shared memory and message
passing.’ It comes in three variants:
Blizzards, Blizzard-E, and Blizzard-ES.
Blizzard-S, an entirely software variant,
is essentially the modification of exe-
cutable code by the insertion of a fast
routine before each shared-memory
reference. It is intended for state
lookup and access control for the block.
If the state check requires some action,
an appropriate user handler invokes.

Blizzard-E uses the machine’s mem-
ory error correction code bits to indi-
cate the block’s invalid state by forcing
uncorrectable errors. However, this
version maintains the read-only state by

enforcing read-only protection on the
page level by the memory-management
unit. Otherwise, it assumes read-write
permission.

Blizzard-ES combines the ECC
approach of Blizzard-E for read instruc-
tions and software tests of Blizzard-S
for write instructions. Performance
evaluation of the three variants for
several shared-memory benchmarks
reveals that Blizzard-S is the most effi-
cient (typically within a factor of two).
When compared to hardware DSM
implementation with fine-grain access
control-the KSRl multiprocessor-
Blizzard’s typical slowdown is several
times, depending on the application.

OPFBATING SXSTEM SOF’IWARE
IMPLEMENTATIONS
Mirage implements coherence mainte-
nance inside the OS kernel.8 The pro-
totype consists of VAX 11/750s con-
nected by Ethernet network, using the
System Vinterface. Mirage’s main con-
tribution is in guaranteeing page own-
ership for a fixed period of time, called
the time window, D. This technique
avoids thrashing and better exploits
inherent processor locality. The value
of D can be tuned statically or dynam-
ically. Mirage uses the model based on
page segmentation. A process that cre-
ates a shared segment defines its size,
name, and access protection, while the
other processes locate and access the
segment by name.

In Mirage, all requests go to the site
of the segment creation, called the
library site (see Figure A), where they
queue and process sequentially. The
Clock site, which provides the page’s
most recent copy, is either a writer or

one of the readers of the requested
page, because the writer and the read-
ers cannot process the copies of the
same page simultaneously. Perfor-
mance evaluation on the worst-case
example, in which two processes inter-
changeably perform writes to the same
page, has shown that the throughput
increase is highly sensitive to proper
choice of the parameter D value.

Clouds, an OS that incorporates soft-
ware-based DSM management, imple-
ments a set of primitives either on top
of Unix, or in the context of the object-
based OS kernel Ra.9 Clouds was
implemented on Ethernet-connected
Sun-3 workstations. The DSM consists
of objects composed of segments that
have access attributes: read-only, read-
write, weak-read, or none. Because the
weak-read mode allows the node to get
a copy of the page with no guarantee
that the page will not be modified dur-
ing read, memory system behavior of
Clouds without any specific restrictions
leads to inconsistent DSM. Fetching of
segments relies on get and discard oper-
ations provided by a DSM controller.

This software module also offers P
and V semaphore primitives as separate
operations. The DSMC is, therefore, a
part of the Clouds OS, but imple-
mented outside its kernel Ra. It is
invoked by a DSM partition that han-
dles segment requests from both Ra and
user objects, and determines whether
the request for segment should be sat-
isfied locally by disk partition, or
remotely by the distributed shared-
memory controller. Both DSM and
DSMC partitions also reside on top of
Unix, with minor changes caused by the
OS dependencies.

T h e nonstructured, physical unit of replication and
coherence is small, typically a cache line. Consequently,
hardware DSM mechanisms usually represent an exten-
sion of the principles found in cache-coherence schemes
of scalable shared-memory architectures. This approach
considerably reduces communication requirements,
because finer sharing granularities minimize the detri-
mental effects of false sharing and thrashing. Searching
and directory functions implemented in hardware are
much faster than with software-level implementations,
and memory-access latencies decrease. However,
advanced coherence-maintenance and latency-reduction
techniques usually complicate design and verification.
Therefore, hardware DSM is often used in high-end

machines where performance is more important than

See the “Hardware DSM implementations” sidebar
for a description of three especially interesting groups
of hardware DSM systems.

cost.

Hybrid-level DSM implementations
During the evolution of this field, the research com-
munity proposed numerous entirely hardware or soft-
ware implementations of the DSM mechanism. How-
ever, even in entirely hardware DSM approaches, there
are software-controlled features explicitly visible to the
programmer for memory reference optimization-for
example, prefetch, update, and deliver in Dash; and

70 IEEE Parallel & Distributed Technology

Figure A. Write request for the page in Mirage.

PROGRAMMING M G U A G E
IMPLEMENTAmONS
Distributed shared memory in Linda is
organized as a “tuple space”-a com-
mon pool of user-defined tuples (basic
storage and access units consisting of
data elements) that are addressed by
logical names.1° Linda, an architecture-
independent language, provides several
special language operators for dealing
with such distributed data structures,
like inserting, removing, and reading
tuples. It avoids the consistency prob-
lem: a tuple must be removed from the
tuple space before an update, and the
modified version is reinserted.

By its nature, the Linda environment
offers possibilities for process decou-
pling, transparent communication, and
dynamic scheduling. Linda offers repli-
cation for problem partitioning. Linda
was implemented on shared-memory
machines (Encore Multimax, Sequent
Balance) as well as on loosely coupled
systems (S/Net, Ethernet network of
MicroVaxes).

Henri E. Bal and Andrew S. Tannen-

baum extensively
discuss software
DSM implemen-
tations. They
propose a new
model of shared
data objects @as-
sive objects ac-
cessible through
predefined oper-
ations), used in
Orca language
for distributed
programming.
The distributed
implementation

relies on selective replication, migration,
and an update mechanism. Different vari-
ants of the update mechanism are avail-
able, depending on the type of commu-
nication provided by the underlying
distributed system (point-to-point mes-
sages, reliable, and unreliable multicast
messages). Orca is predominantly
intended for application programming.

References
1. K Li, ”IVY: A Shared Virtual Memory

System for Parallel Computing,” Pmc.
Int’l Con$ Parallel Processing, IEEE
Computer Society Press, Los Alamitos,
Calif., 1988, pp. 94-101.

2. S. Zhou, M. S t u ” , and T. McIner-
ney, “Extending Distributed Shared
Memory to Heterogeneous Environ-
ments,”Proc. 10th Int7 Con$ Distributed
Computing Systems, CS Press, 1990, pp.
30-37.

3. J.B. Carter, J.K. Bennet, and W.

Zwaenepoel, “Implementation and
Performance of Munin,” Proc. 13th
AGM S p p . Operating System Pnncipks,
ACM Press, New York, 1991, pp,
152-164.

4. P. Keleher et al., “TreadMarks: Dis-
tributed Shared Memory on Standard
Workstations and Operating Systems,”
Proc. Usenix Winter Con$, Usenix
Assoc., Berkeley, Calif., 1994, pp.
1 15-1 32.

5. J.P. Singh, W.-D. Weber, and A.
Gupta, “Splash: Stanford Parallel
Applications for Shared Memory,”
Tech. Report CSL-TR-91-469, Stan-
ford Univ., Stanford, Calif., 1991.

6. B.N. Bershad, M.J. Zekauskas, and
W.A Sawdon, “The Midway Dismb-
uted Shared Memory System,” Comp-
con 93, CS Press, 1993, pp. 528-537.

7. I. Schoinas et al., “Fine-Grain Access
Control for Distributed Shared Mem-
ory,” Proc. Sixth Int’l Con$ Architectural
Suppmtf6r Programming Languages and
Operating S y f l m , ACM Press, 1994,
pp. 297-306.

8. B. Fleisch and G. Popek, “Mirage: A
Coherent Distributed Shared Memory
Design,“ Proc. 14th AGM SFP. Oper-
ating System Principles, ACM Press,
1989, pp. 211-223.

9. U. Ramachandran andM.Y.A. Khalidi,
“An Implementation of Distributed
Shared Memory,” Sofnuare Practice and
Experience, Vol. 21, No. 5, May 1991,
pp. 443-464.

10. S . Ahuja, N. Carriero, and D. Gelern-
ter, “Linda and Friends,” Computer,
Vol. 19, No. 8, May 1986, pp. 2634.

11. H.E. Bal and AS. Tannenbaum, “Dis-
tributed Programming with Shared
Data,” Int’l Con$ on Computer Lan-
guages, CS Press, 1988, pp. 82-91.

prefetch and poststore in KSR1. Many purely software
solutions, however, require some hardware support-
such as virtual memory management hardware in IVY
and ECC in Blizzard-E. As to be expected, neither the
entirely hardware nor entirely software approach has all
the advantages. Therefore, it is quite natural to employ
hybrid methods, with predominantly o r partially com-
bined hardware and software elements, to balance the
cost-to-complexity trade-offs.

T h e “Hybrid-level implementations” sidebar sum-
marizes some of these tradeoffs.

MEMORY CONSISTENCY MODELS
T h e memory consistency model defines the legal

ordering of memory references issued by a processor,
as observed by other processor^.^^^^ Different types of
parallel applications inherently require various con-
sistency models. T h e model’s restrictiveness largely
influences system performance in executing these
applications. Stronger forms of the consistency model
typically increase memory access latency and band-
width requirements, while simplifying programming.
Looser constraints in more relaxed models, which
allow memory reordering, pipelining, and overlap-
ping, consequently improve performance, at the
expense of higher programmer involvement in syn-
chronizing shared data accesses. For optimal behavior,
systems with multiple consistency models adaptively

Summer 1996 71

Hardware DSM
implementations
According to the memory system archi-
tecture, three groups of hardware DSM
systems are especially interesting:

cache coherent nonuniform mem-
ory architectures (CC-NUMA),
cache-only memory architectures
(COMA), and
reflective memory system (RMS).

CC-NUMA DSM SYSTEMS
A CC-NUMA system (see Figure B)
statically distributes the shared virtual
address space across local memories of
clusters, which both local processors
and processors from other clusters in
the system can access, although with
quite different access latencies. The
DSM mechanism relies on directories
with organization varying from a full
map to different dynamic structures,
such as singly or doubly linked lists and
trees. The main effort is to achieve high
performance (as in full-map schemes)
and good scalability provided by reduc-
ing the directory storage overhead. T o
minimize latency, static partitioning of
data should be done carefully, to maxi-
mize the frequency of local accesses.

Performance indicators also
depend highly on the intercon-
nection topology. The invali-
dation mechanism is typically
applied to provide consistency,
while some relaxed memory
consistency model can serve as
a source of performance im-
provement. Typical represen-
tatives of this approach are
Memnet, Dash, and SCI (see
Table C.)

Memnet
This ring-based multiproces-
sor-Memory as Network
Abstraction-was one of the
earliest hardware DSM systems.' The
main goal was to avoid costly inter-
processor communication via messages
and to provide an abstraction of shared
memory to an application directly by
the network, without kernel OS inter-
vention. The Memnet address space
maps onto the local memories of each
cluster (the reserved area) in a NUMA
fashion. Another part of each local
memory is the cache area, which is used
for replication of 32-byte blocks whose
reserved area is in some remote host.
The coherence protocol is imple-

Figure B. CC-NUMA memory architecture.

mented in hardware state machines of
the Memnet device in each cluster-a
dual port memory controller on its local
bus and an interface to the ring.

On a miss in local memory, the
Memnet device sends an appropriate
message, which circulates on the ring.
Each Memnet device on the ring
inspects the message in a snooping
manner. The nearest cluster with a valid
copy satisfies the request by inserting
requested data in the message before
forwarding. The write request to a
nonexclusive copy results in a message

Table C. Hardware DSM implementations.

IMPLEMENTATION CLUSTER CONFIGURATION NETWORK TYPE OF ALGORITHM CONSISTENCY MODEL GRANULARITY UNIT COHERENCE WLICY

Memnet Single processor, Token ring MRSW Sequential 32 bytes Invalidate

Invalidate Dash SGI 4D/340 (4 PES, Mesh MRSW Release 16 bytes

SCI Arbitrary Arbitrary MRSW Sequential 16 bytes Invalidate
KSR1 64-bit custom PE, Ring-based MRSW Sequential 128 bytes Invalidate

Memnet device

2-L caches), local
memory

ItD caches, 32M hierarchy
local memory

DDM 4 MC8811 Os. 2 caches, Bus-based MRSW Sequential 16 bytes Invalidate
8-32M local memory hierarchy

256M local memory

Merlin 40-MIPS computer Mesh MRMW Processor 8 bytes Update
RMS 1-4 processors, caches, RM bus MRMW Processor 4 bytes Update

~- _. ____

applied to appropriate data types have recently
emerged. and entry consistency.

Stronger memory consistency models that treat syn-
chronization accesses as ordinary read and write oper-
ations are sequential and processor consistency. More
relaxed models that distinguish between ordinary and

synchronization accesses are weak, release, lazy release,

Sequential consistency mandates that all a system's
processors observe the same interleaving of reads and
writes issued in sequences by individual processors. A
simple implementation of this model is a single-port

1

72 IEEE Parallel & Distributed Technology

by the directory as hold-
ing the copy of the block).

Coherence maintenance is
based on a full-map directory
protocol. A memory block
can be in one of three states:
uncached (not cached outside
the home cluster), cached
(one or more unmodified
copies in remote clusters), or
dirty (modified in some
remote cluster). Usually,
because of the property of
locality, references can be

Figure C. COMA memory architecture. satisfied in the local cluster.

that invalidates other shared copes as it
passes through each Memnet device
having a valid copy of that block.
Finally, the interface of the cluster that
generated the message receives and
removes it from the ring.

Dash
Directory Architecture for Shared
Memory, a scalable cluster multi-
processor architecture using a direc-
tory-based hardware DSM mecha-
nism.2 Each 4-processor cluster
contains an equal part of the overal sys-
tem’s shared memory (home property)
and corresponding directory entries.
Each processor also has a two-level pri-
vate cache hierarchy where the loca-
tions from other clusters’ memories
(remote) can be replicated or migrated
in 16-byte blocks (unlike Memnet,
where a part of local memory is used for
this purpose). The memory hierarchy
of Dash is split into four levels:

processor cache,
caches of other processors in the
local cluster,
home cluster (the cluster that con-
tains directory and physical memory
for a given memory block),
remote cluster (the cluster marked

Otherwise, a request goes to
the home cluster for the

involved block, which takes some action
according to the state found in its direc-
tory. A relaxed memory consistency
model-release consistency-improves
performance, as do memory-access
optimizations. Techniques for reduc-
ing memory latency, such as software
controlled prefetching, update and
deliver operations, also improve per-
formance. Dash provides hardware sup-
port for synchronization.

SCI
Memory organization in an Scalable
Coherent Interface-based CC-NUMA
DSM system is similar to Dash, and
data from remote memories can be
cached in local caches. However, the
IEEE P1596 SCI represents an inter-
face standard, rather than a complete
system design.) Among other issues, it
defines a scalable directory cache-
coherence protocol. Instead of central-
izing the directory, SCI distributes it
among those caches currently sharing
the data, in the form of doubly linked
lists. The directory entry is a shared
data structure that multiple processors
may concurrently access. The home
memory controller keeps only a pointer
to the head of the list and a few status
bits for each cache block, while the local

cache controllers must store the for-
ward and backward pointers, and the
status bits.

A read miss request is always sent to
the home memory. The memory con-
troller uses the requester identifier from
the request packet to point to the new
head of the list. The old head pointer
goes back to the requester along with
the data block (if available). The
requester uses it to chain itself as the
head of the list, and to request the data
from the old head (if not supplied by the
home cluster). In the case of a write to
a nonexclusive block, the request for the
ownership also goes to the home mem-
ory. All copies in the system are invali-
dated by forwarding an invalidation
message from the head down the list,
and the requester becomes the new
head of the list. However, the distribu-
tion of individual directory entries
increases the latency and complexity of
the memory references. T o reduce
latency and to support additional func-
tions, the SCI working committee has
proposed some enhancements such as
converting sharing lists to sharing trees,
request combining, and support for
queue-based locks.

COMA DSM SYSTEMS
The COMA architecture (see Figure C)
uses local memories of the clusters as
huge caches for data blocks from virtual
shared address spaces (attraction mem-
ories). There is no physical memory
home location predetermined for a par-
ticular data item, and it can be repli-
cated and migrated in attraction mem-
ories on demand. Therefore, the
distribution of data across local memo-
ries and caches adapts dynamically to
the application’s behavior.

COMA architectures have hierarchi-
cal network topologies that simplify two
main problems in this type of system:
locating a data block and replacement.
They are less sensitive to static distrib-
ution of data than are NUMA archi-

(Continued on page 74)

shared-memory system that enforces serialized access
servicing from a single first-in, first-out (FIFO) queue.
DSM systems achieve a similar implementation by seri-
alizing all requests on a central server node. Neither case
allows bypassing of read and write requests from the
same processor. Conditions for sequential consistency

hold in the majority of bus-based, shared-memory
multiprocessors, as well as in early DSM systems, such
as Tvy and Mirage.

Processor consistency assumes that the order in which
different processors can see memory operations need
not be identical, but all processors must observe the

Summer 1996 73

(Continued from page 73)

tectures. Because of their cache organi-
zation, attraction memories efficiently
reduce capacity and conflict miss rates.
But, the hierarchical structure imposes
slightly higher communication and
remote-miss latencies. Somewhat in-
creased storage overhead for keeping
the information typical for cache mem-
ory is also inherent to the COMA archi-
tecture. The two most relevant repre-
sentatives of COMA systems are the
KSRl and DDM.

KSRl
The KSRl multiprocessor represents
one of the early attempts to make DSM
systems available on the market." It
consists of a ring-based hierarchical
organization of clusters, each with a
local 32-Mbyte cache. The unit of allo-
cation in local caches is a page (16
Kbytes), while the unit of transfer and
sharing in local caches is a subpage (128
bytes).

The dedicated hardware responsi-
ble for locating, copying, and main-
taining coherence of subpages in local
caches is called the Allcache engine,
which is organized as a hierarchy with
directories on intermediate levels.
This engine transparently routes the
requests through the hierarchy.
Missed accesses are most likely to be
satisfied by clusters on the same or
next higher level in the hierarchy. In
that way, the Allcache organization
minimizes the path to locate a partic-
ular address.

The coherence protocol is invalida-
tion-based. Possible states of a subpage
in a particular local cache are exclusive
(only valid copy), nonexclusive (owner;
multiple copies exist), copy (nonowner;
valid copy), and invalid (not valid, but
allocated subpage). Besides these usual
states, KSRl provides the atomic state

for synchronization. Locking and
unlocking the subpage are achieved with
special instructions. As in all architec-
tures with no main memory where all
data are stored in the caches, the prob-
lem of the replacement of cache lines
arises. There is no default destination
for the line in the main memory, so the
choice of a new destination and the
directory update can be complicated and
time-consuming. Besides that, propa-
gation of requests through hierarchical
directories cause longer latencies.

DDM
The Data Diffusion Machine prototype
is made of 4-processor clusters with an
attraction memory and an asynchro-
nous split-transaction bus.5 Attaching a
directory on top of the local DDM bus,
to enable its communication with a
higher-level bus of the same type,
allows a large system with directory-
and bus-based hierarchy (as opposed to
the KSRl ring-based hierarchy). The
directory is a set-associative memory
that stores the state information for all
items in attraction memories below it,
but without data.

A snoopy write-invalidate coherence
protocol handles the attraction of data
on read, erases the replicated data on
write, and manages the replacement
when a set in an attraction memory is
full. An item can be in seven states.
Three correspond to invalid, exclusive,
and valid, typical for the snoopy proto-
cols. Replacing the dirty state is a set of
four transient states needed to remem-
ber the outstanding requests on the
split-transaction bus. Transactions that
cannot be completed on a lower level
go through the directory to the level
above. Similarly, the directory recog-
nizes the transactions that need to be
serviced by a subsystem and routes
them onto the level below it.

mCl'M? MEMORY DSM
SYSTEMS
Reflective memory systems have a
hardware-implemented update mech-
anism a t a fine data granularity. The
global shared address space is formed
out of the segments in local memories,
which are designated as shared and
mapped to this space through pro-
grammable mapping tables in each clus-
ter (see Figure D). Hence, the parts of
this shared space are selectively repli-
cated ("reflected") across different clus-
ters. Coherence maintenance of shared
regions is based on the full-replication
MRMW algorithm. To keep it updated
in a nondemand, anticipatory manner,
each write to an address in this shared
address space in a cluster propagates
through a broadcast or multicast to all
other clusters where the same address
is mapped into.

The processor does not stall on
writes, and computation overlaps with
communication. This is a source of per-
formance improvement typical for
relaxed memory consistency models.
Also, there is no contention and long
latencies as in typical shared-memory
systems, because unrestricted access to
shared data and simultaneous accesses
to local copies are ensured. But, all
reads from the shared memory are
local, with a deterministic access time.
The principle of this DSM mechanism
closely resembles the write-update
cache-coherence protocols. Typical
reflective memory systems are RMS
and Merlin.

RMS
Several systems with different clusters
and network topologies apply reflective
memory. Because broadcast is the most
appropriate mechanism for updating
replicated segments, the shared-bus
topology is especially convenient for the

sequence of writes issued by each processor in the same
sequence. Unlike sequential consistency, processor con-
sistency implementations allow reads to bypass writes
in queues from which memory requests are serviced.
Examples of systems that guarantee processor consis-
tency are VAX 8800, Plus, Merlin, and RMS.

Weak consistency distinguishes between ordinary and
synchronization memory accesses. It requires that mem-
ory becomes consistent only on synchronization
accesses. In this model, requirements for sequential con-

74

sistency apply only to synchronization accesses. A syn-
chronization access also must wait for all previous
accesses to execute, while ordinary reads and writes must
wait only for completion of previous synchronization
accesses. Sun's Sparc architecture uses a variant of the
weak consistency model.

Release consistency further divides synchronization
accesses to acquire and release, so that protected ordi-
nary shared accesses can execute between acquire-
release pairs. In this model, ordinary read or write access

IEEE Parallel & Distributed Technology

the interconnection network to all
shared copies in other local memories.
Merlin supports two types of sharing in
hardware: synchronous (updates to the
same region are routed through a spe-
cific canonical cluster) and rapid
(updates are propagated individually by
the shortest routes). This system also
addresses the synchronization, inter-
rupt, and lock handling integrated with
reflective memory sharing. Merlin also
provides a support for heterogeneous
processing.

Figure D. Reflective memory DSM architecture.

reflective memory architecture. The
Encore Computer Corporation devel-
oped a number of bus-based RMSs for
a wide range of applications-for exam-
ple, the Encore Infinity.6

These systems typically consist of a
lower number of minicomputer clusters
connected by the RM bus, a write-only
bus because traffic on it only consists of
word-based distributed write transfers
(address +value of the data word). Later
enhancements (Memory Channel) also
allow for block-based updates. The
replication unit is a 8-Kbyte segment.
Segments are treated as windows that
can be open (mapped into reflective
shared space) or closed (disabled for
reflection and exclusively accessed by
each particular cluster). A replicated
segment can map to different addresses
in each cluster. Therefore, the transla-
tion map tables are provided separately
for the transmit (for each block of the
local memory) and receive (for each

block of the reflected address space)
sides.

Merlin
Although very convenient for broad-
casting, bus-based systems are notori-
ous for their restricted scalability.
Hence, the Merlin (Memory Routed,
Logical Interconnection Network) rep-
resents a reflective memory-based
interconnection system using mesh
topology with low-latency memory
sharing on the word basis.’

Besides user-specified sharing infor-
mation, OS calls are necessary to ini-
tialize routing maps and establish data-
exchange patterns before program
execution. The Merlin interface in the
host backplane monitors all memory
changes, and on each write to the local
physical memory mapped as shared, it
makes a temporary copy of the address
and the written value noninvasively.
Instead of broadcast as in RMS, multi-
cast transmits the word packet through

1.

2.

3 .

4.

5.

6.

7.

References
. G. Delo. D. Farber. and R. Minnich.

“Mem&y as a Network Abstraction,’;
IEEE Network, July 1991, pp. 34-41.

D. Lenoski et al., “The Stanford DASH
Multiprocessor,” Computer, Vol. 2 5,
No. 3, Mar. 1992, pp. 63-79.

D.V. James, “The Scalable Coherent
Interface: Scaling to High-Performance
Systems,” Compcon 94, IEEE Computer
Society Press, Los Alamitos, Calif.,
1994, pp. 6471.

S. Frank et al. “The KSRl : Bridging the
Gap Between Shared Memory and
MPPs,” Compcon 93, CS Press, 1993,
pp. 285-294.

E. Hagersten, k Landin, and S. Haridi,
“DDM-A Cache-Only Memory
Architecture,” Computer, Vol. 25, No.
9, Sept. 1992, pp. 44-54.

S. Lucci et al., “Reflective-Memory
Multiprocessor,” Proc. 28th IEEE/ACM
Hawaii Int’l Con$ System Sciences, CS
Press, 1995, pp. 85-94.

C. Maples and L. Wittie, “Merlin: A
Superglue for Multicomputer Sys-
tems,” Compcon 90, CS Press, 1990, pp.
73-81.

can execute only after all previous acquires on the same
processor execute. In addition, a release can execute only
after all previous ordinary reads and writes on the same
processor execute. Finally, acquire and release syn-
chronization accesses must fulfill the requirements that
processor consistency puts on ordinary read and write
accesses. T h e Dash and Munin DSM systems exhibit
different implementations of release consistency.

Lazy release consistency is an enhancement of release
consistency. Instead of propagating modifications to

the shared address space on each release (like in release
consistency-sometimes called eager consistency), modi-
fications wait until the next relevant acquire. Also, not
all modifications must propagate on the acquire, but
only those associated with the chain of preceding syn-
chronization operations on that specific lock. This min-
imizes the amount of data exchanged, while also reduc-
ing the number of messages by combining modification
with lock acquires in one message. T h e Treadmarks
DSM system implements lazy release consistency.

Summer 1996 75

Hybrid DSM
implementations

Table D provides an overview of the
hybrid-level DSM implementations.

PLUS
A typical hybrid approach achieves data
replication and migration from a shared
virtual address space across the clusters
in software, while implementing coher-
ence management in hardware. Plus is
such a system.* In Plus, software han-
dles data placement and replacement in
local memories in units of 4-Kbyte
pages. However, memory coherence
for replicated data resides on the 32-
bit word basis by a nondemand,
write-update protocol implemented in
hardware. Replicated instances of a
page are chained into an ordered singly
linked list, headed with the master copy,
to ensure the propagation of updates to
all copies. Because a relaxed consistency
model is assumed, writes are nonblock-
ing, and thefence operation is available
to the user for explicit strong ordering
of writes. T o optimize the synchro-
nization, Plus provides a set of special-
ized interlocked read-modify-write
operations called delayed operations.
Plus hides their latency by splitting
them into issue and veri& phases, thus
allowing them to proceed concurrently
with regular processing.

GAIACTICA NET
Galactica Net solves some DSM issues
in a manner similar to Plus. It repli-

cates pages from the virtual address
space on demand under control of vir-
tual memory software, implemented in
the Mach OS. It also provides hard-
ware support for a virtual memory
mechanism, realized through a block
transfer engine, that can rapidly trans-
fer pages in reaction to page faults. A
page can be in one of three states: read-
only, private, and update, denoted by
tables maintained by the OS. A write-
update protocol, implemented entirely
in hardware, keeps the coherence for
writeable shared pages (update mode).

All copies of a shared page in the
update state are organized in a virtwtl
sharing ring-a linked list used for for-
warding of updates. Virtual shared
rings are realized using update routing
tables kept in each cluster’s network
interface, which are also maintained by
software. Therefore, write references
to pages in update state are detected
by hardware and propagated accord-
ing to the table. Because of the update
mechanism, for some applications,
broadcast of excessive updates can pro-
duce a large amount of traffic. Also, the
unit of sharing is quite large, and false
sharing effects can degrade perfor-
mance. Upon recognizing an actual
reference pattern, Galactica Net can
dynamically switch from the hardware
update scheme to software invalidate
coherence (another hybrid and adap-
tive feature), using a competitive pro-
tocol based on per-page update coun-
ters. When remote updates to a page
far exceed local references, an inter-
rupt is raised, and the OS invalidates

this page and removes it from its shar-
ing ring to prevent the unnecessary
traffic to unused copies.

MITALEwIFlc!
This system implements the Limit-
LESS directory protocol, whch repre-
sents a hardware-based coherence
scheme supported by a software mech-
a n i ~ m . ~ T o reduce storage require-
ments, directory entries contain only a
limited number of hardware pointers,
which should be sufficient in a vast
majority of cases. Software handles
exceptional circumstances, when more
pointers are needed. In those infre-
quent cases, an interrupt is generated,
and a full-map directory for the block
is emulated in software. A fast-trap
mechanism supports this feature, and
a multiple-context concept hides the
memory latency. This approach’s main
advantage is that the applied directory
coherence protocol is storage-efficient,
while performing about as well as the
full-map directory protocol.

FLASH
Unlike Alewife, the Flash multi-
processor implements the memory
coherence protocol in software, but
shifts its execution burden from the
main processor to an auxiliary proto-
col processor-Magic (Memory and
General Interconnection C~ntroller).~
This specialized programmable con-
troller efficiently executes protocol
actions in a pipelined manner, avoid-
ing context switches on the main
processor. Other systems, such as the

Table D. Hybrid-level DSM implementations.

CLUSTER CONFIGURATION
NAME + NETWORK TYPE OF ALGORITHM CONSISTENCY MODEL GRANULARITY UNIT COHERENCE POLICY

Plus M88000,32K cache, MRMW

Galactica Net 4 M8811 Os, 2-L caches MRMW

Alewife Sparcle PE, 64K cache, MRSW

8-32M local memory, mesh

256M local memory, mesh

4M local memory, CMMU,
mesh

Magic controller, mesh

NP controller

Intel Paragon routing network

Flash MIPS T5, I tD caches, MRSW

Typhoon SuperSparc, 2-L caches, MRSW

Shrimp 16 Pentium PC nodes, MRMW

MRSW Hybrid DSM Flash-like
-. ._ .- - - . .

Processor

Multiple

Sequential

Release

Custom

AURC, scope

Release

4 Kbytes Update

8 Kbytes Update/

16 bytes Invalidate
invalidate

128 bytes Invalidate

32 bytes Invalidate
custom

4 Kbytes Update/
invalidate

Variable Invalidate

76 IEEE Parallel & Distributed Technology

network interface processor (NP)
in T y p h ~ o n , ~ follow this approach,
which also ensures great flexibility in
experimenting and testing. The NP
processor uses a hardware-assisted dis-
patch mechanism to invoke a user-
level procedure to handle an event.

SHRIMP
The Shrimp (Scalable High-Perfor-
mance Really Inexpensive Multi-
processor) multicomputer also uses
reflective memory.6 The virtual mem-
ory-mapped network interface imple-
ments an automatic update in hard-
ware. In this system, after a page (send
buffer) maps out to another page’s
cluster memory (receive buffer) by the
OS, each local write (message) to this
page also immediately propagates to
the destination automatically by hard-
ware. The automatic update release con-
sirtency (AURC) approach keeps only
one copy of a page consistent using
fine-grain automatic updates, while
keeping other copies consistent using
an invalidation-based software proto-
col. Another solution for implement-
ing DSM on the Shrimp multicom-
puter uses the innovative concept of
scope consistency, representing a com-
promise between entry and lazy release
consistency.

OTHER HYEIRID APPROACHES
T o improve the performance, a hybrid
approach called coopwative shared mew
09 uses programmer-supplied anno-
tations.’ Programmers identify the
segments that use shared data with
corresponding Check-In (exclusive or
shared access) and Check-out (relin-
quish) annotations, executed as mem-
ory system directives. These perfor-
mance primitives do not change
program semantics (even if misap-
plied), but reduce unintended com-
munication caused by thrashing and
false sharing. Cooperative prefetch can
also serve to hide the memory latency.
The CICO programming model is
completely and efficiently supported
in hardware by a minimal directory
protocol DiqSW. Traps to the system
software occur only on memory
accesses that violate the CICO.

One hybrid DSM protocol8 com-
bines the advantages of a software pro-
tocol for coarse-grain data regions and
a hardware coherence scheme for fine-

grain sharing in a tightly coupled sys-
tem. The software part of the protocol
is similar to Midway. The programmer
must explicitly identify the regions-
coarse-grain data structures. Then,
usage annotations-for example,
BeginReadIEndRead, Begin WritefEnd-
Write-identify program segments
that safely reference the data from a
certain region (without modification
from other processors). Library rou-
tines invoked by these annotations
maintain coherence of annotated data.
A directory-based hardware protocol
manages nonannotated data coher-
ence. Both the protocol’s software and
hardware components use the invali-
dation policy. A variable-size coher-
ence unit of the software part of the
protocol eliminates false sharing, while
reducing remote misses by efficient
bulk transfers of coarse-grain data and
their replication in local memories.
The protocol is also insensitive to ini-
tial data placement. As in Midway,
Munin, and CICO, the main disad-
vantage is the burden put on the pro-
grammer to insert the annotations,
although this may not be so compli-
cated because this data-use informa-
tion is naturally known.

Finally, because message-passing
and shared-memory machines have
been converging recently, efforts are
ongoing to integrate these two com-
munication paradigms in a single sys-
tem. In addition to the just-discussed
coherence protocol, Alewife also
allows explicit sending of messages in
a shared-memory program. Messages
are delivered via an interrupt and
are dispatched in software. Besides
the Dash-like software-implemented
directory cache-coherence protocol,
Flash also provides hardware support
for message passing with low over-
head. Flash gives the user accesses to
block transfer without sacrificing
protection.

Typhoon is a proposed hardware
implementation especially suited for
the Tempest interface-a set of user-
level mechanisms that can modify the
semantics and performance of shared-
memory operations. Tempest consists
of four types of these mechanisms:
low-overhead messages, bulk data
transfers, virtual memory manage-
ment, and fine-grain access control.
For example, user-level transparent

shared memory can be implemented
using Stack-a user library with Tem-
pest fine-grain access mechanisms.
Stache replicates the remote data in a
part of the cluster’s local memory
according to a COMA-like policy. It
maps virtual addresses of shared data
to local physical memory at page gran-
ularity, but maintains coherence at the
block level. A coherence protocol sim-
ilar to LimitLESS is implemented
entirely in software.

References
1. R. Bisani and M. Ravishankar, “Plus: A

Distribued Shared-Memory System,”
Proc. 17th Ann. Int’l S p p . Computer
Arcbitemre, IEEE Computer Society
Press, Los Alamitos, Calif., 1990, pp.
1 1 S-124.

2. A. Wilson, R. LaRowe, and M. Teller,
“Hardware Assist for Distributed
Shared Memory,” Proc. 13tb Int? Cm$
on Distributed Conputkg Systems, CS
Press, 1993, pp. 246-255.

3 . D. Chaiken, J. Kubiatowicz, and k
Agarwal, “Software-Extended Coher-
ent Shared Memory: Performance and
Cost,” &OE. 2ltbAnn. intlsjnyb. Com-
puter Arcbitemre, CS Press, 1994, pp.
314324.

4. J. Kuskin et al., “The Stanford Flash
Multiprocessor,” Proc. 21tb Ann. Int’l
S y p . Cmputer Arcbitcchrre, CS Press,
1994, pp. 302-313.

S. S . Reinhardt, J. Larus, and D. Wood,
“Tempest and Typhoon: User-Level
Shared Memory,” h c . 21tb A m . Int?
S’p. Computer Arcbitamre, CS Press,
1994, pp. 325-336.

6. L. Iftode, J. Pal Singh, and K. Li,
“Scope Consistency: A Bridge Between
Release Consistency and Entry Consis-
tency,” to be published in h. Ezgbtb
Ann. S‘p. Parallel Algm‘tbms and
Arcbi@cmrs, CS Press, 1996.

7. M. Hill, J. Larus, and S. Reinhardt,
“Cooperative Shared Memory: Soft-
ware and Hardware for Scalable Multi-
processors,” ACM Tram. Cmnputw Sys-
tems, ACM Press, New York, 1993, pp.
300-318.

8. R. Chandra et al., “Performance Eval-
uation of Hybrid Hardware and Soft-
ware Distributed Shared Memory Pro-
tocols,” Tech. Report No. CSL-TR-
93-597, Stanford Univ., Stanford,
Calif., 1993.

Summer 1996 77

Finally, entry consistency also improves release con-
sistency. This model requires that each or
variable or object be protected and associat
chronization variable, using language-lev
Consequently, modification of the ordinary shared vari-
able waits until the next acquire of the associated syn-
chronization variable that guards it. Because only the
changes for a subset of shared variables protected by the
particular synchronization variable must propagate at
that moment, the traffic sipficantly decreases. Latency
also falls because a shared access does not have to wait
on the completion of other unrelated acquire$. Perfor-
mance improves at the expense of higher programmer
involvement in specifymg synchronization information
for each variable. The Midway DSM system first imple-
mented entry consistency.

Important design choices in
building DSM systems
In addition to the DSM algorithm, implementation level
of DSM mechanism, and memory consistency model,
characteristics that strongly affect overall DSM system
performance include cluster configuration, intercon-
nection network, structure of shared data, granularity
of coherence unit, responsibility for the DSM manage-
ment, and coherence policy.

Cluster conj5gurataon
Varylng greatly across different DSM systems, cluster
configurauon includes one or several usually off-the-
shelf processors. Because each processor has its own
local cache (or even cache hierarchy), cache coherence
on the cluster level must be integrated globally with the
DSM mechanism. Parts of a local memory module can
be configured as private or shared-mapped
tual shared address space. In addition to CO

cluster to the system, the network interface
sometimes integrates important DSM m
responsibilities.

Interconnectaon networks
Almost all types of interconnection networks found in
multiprocessors and distributed systems will work in
DSM systems. Most software-oriented D
are network independent, although many
top of Ethernet, readily available in most environments.
But, topologies such as multilevel buses, ring hierar-
chies, or meshes have served as platforms for hardware-
oriented DSM systems. The interconnection network's

topology can offer or re
allel exchange of data re1
For the same reasons .
tion, it determines
and multicast tra
implementing D

Shared data structure
The structure of shar
out of shared address
of data items in it. Ha
nonstructured data objec
tations tend to use data it
ties, to take advantage of
by the application.

Coherence unit gran
The granularity of the
size of the data blocks ma
This parameter's affect
mance relates closely
cal for the applicatio
systems use smaller units
software solutions, based
nisms, organize data in
counting on coarse-gra
c a k d f a h sharing, the U

€or directory storage, bu
that multiple process0
block simultaneously
lated parts of that blo

DSM management
The responsibility fo

ment, but the central
Designers can define
management statically
tlenecks and prov
responsibility for D
the distribution of d

Coherence policy
The coherence policy dete
copies of a data item
updated or invalidated
the coherence policy
data. For very fine-gra

costs approximately the same as an invalidation mes-
sage. Therefore, systems with word-based coherence
maintenance often use the update policy, but coarse-
grain systems largely use invalidation. An invalidation
approach’s efficiency grows when the read and write
access sequences to the same data item by various
processors are not highly interleaved. The best perfor-
mance comes when the coherence policy dynamically
adapts to observed reference patterns.

ecause of the combined advantages of the
shared-memory and distributed systems,
DSM approaches appear to be a viable solu-
tion for large-scale, high-performance sys-
tems with a reduced cost of parallel software

development. However, efforts to build successful com-
mercial systems that follow the DSM paradigm are still
in their infancy, so research prototypes still prevail.
Therefore, DSM remains a very active research area.
Promising research directions include

0 improving DSM algorithms and mechanisms, and
adapting them to the characteristics of typical appli-
cations and system configurations,
synergistic combining of hardware and software
DSM implementations,

0 integrating shared-memory and message-passing
programming paradigms,
creating new and innovative system architectures
(especially in the memory system), and

0 combining multiple-consistency models.

From this point of view, further investments in
exploring, developing, and implementing DSM systems
seem to be quite justified.

ACKNOWLEDGMENTS
This work was partly supported by National Science Foundation of
Serbia and National Technology Foundation of Serbia. We also want
to thank Vojislav Protiit for his help in providing up-to-date literature,
and Liviu Iftode, who kindly provided some of his most recent papers.

REFERENCES
1 M.J. Elynn, Computer Archttecture. Papelzned and Parallel Processor

Dexzp, Jones and Bartlett, Boston, 1995

2. V. Lo, “Operaung Systems Enhancements for Distributed Shared
Memory,” Advanceszn Computers, Vol. 39, 1994, pp. 191-237.

3. J. Prout, M. Toma’semt, and V. Miluunomt, “A Survey of Dis-
tributed Shared Memory Systems,” Proc 28th Ann Hawazr Int’l
Conj System Sccences, IEEE Computer Society Press, Los Alami-
tos, Calif., 1995, pp. 74-84.

4. M. Toma’sevi? and V. Milutinovi?, “Hardware Approaches to
Cache Coherence in Shared-Memory Multiprocessors, Part 1
(Basic Issues),” IEEEMicro, Vol. 14, No. 5, Oct. 1994, pp. 52-59.

5. M. TomaSevit and V. Milutinoviit, “Hardware Approaches to
Cache Coherence in Shared-Memory Multiprocessors, Part 2
(Advanced Issues),” IEEE Micro, Vol. 14, No. 6, Dec. 1994, pp.

6. I. Tartalja and V. Milutinovit, “A Survey of Software Solutions
for Maintenance of Cache Consistency in Shared MemoryMulti-
processors,” Proc. 28th Ann. Hawaii Int’l Conj System Sciences, CS
Press, 1995, pp. 272-282.

7. K. Li and P. Hudak, “Memory Coherence in Shared Virtual
Memory Systems,” ACM Trans. Computer Systems, Vol. 7, No. 4,

8. M. Stumm and S. Zhou, “Algorithms Implementing Distributed
SharedMemory,” Computer, Vol. 23, No. 5, May 1990, pp. 5444.

9. D.L. Black, A. Gupta, and W. Weber, “Competitive Manage-
ment of Distributed Shared Memory,” Compcon 89, CS Press,
1989, pp. 184-190.

10. R.E. Kessler and M. Livny, “An Analysis of Distributed Shared
Memory Algorithms,” Proc. Ninth Int ’I Con$ Distributed Comput-
ing Systems, CS Press, 1989, pp. 498-505.

11. R. Bisiani and A. Forin, “Multilanguage Parallel Programming
of Heterogeneous Machines,” IEEE Trans. Computers, Vol. 3 7,

12. J. Protit, M. TomaSeviC, and V. Milutinovik, “A Survey of Dis-
tributed Shared Memory: Concepts and Systems,” Tech. Report
No. ETF-TR-95-157, Dept. of Computer Engineering, Univ. of
Belgrade, Belgrade, Yugoslavia, 1995.

13. J. Protik, M. Toma’sevi?, and V. Milutinovii-, “Tutorial on Dis-
tributed Shared Memory: Concepts and Systems,” CS Press, to be
published in 1996.

14. K. Gharachorloo et al., “Memory Consistency and Event Order-
ing in Scalable Shared-Memory Multiprocessors,” Proc. 17th Ann.
Int’l S p p . Computer Architecture, CS Press, 1990, pp. 15-26.

15. P. Keleher, A.L. Cox, and W. Zwaenepoel, “Lazy Release Con-
sistency for Software Distributed Shared Memory,” Proc. 19th
Ann. Int’lSymp. ComputerArchitecture, CS Press, 1992, pp. 13-21.

61-66.

NOV. 1989, pp. 321-359.

NO. 8, Aug. 1988, pp. 930-945.

Jelica ProtiC is on the faculty of the School of Electrical Engineer-
ing, University of Belgrade, where she received her BSc and MSc in
computer engineering. She is currently working toward her PhD in
the field of DSM. Her research interests are in computer architec-
ture, distributed systems, and performance analysis. She can be
reached at jeca@ubbg.etf.bg.ac.yu.

Milo TomaSeviC is on the faculty of the School of Elecvical Engi-
neering, University of Belgrade, where he received his BSc in elec-
trical engineering and MSc and PhD in computer engineering.
His research interests are computer architectures, multiprocessor sys-
tems, and distributed shared-memory systems. He can be reached a t
etomasev@ubbg.etf.bg.ac.yu.

Veljko Milutinovic is on the faculty of the School of Electrical Engi-
neering, University of Belgrade, where he received his BSc in elec-
trical engineering and MSc and PhD in computer engineering. He
was a coarchitect of one of the first 200-MHz microprocessors, and
is active in parallel and distributed processing. He has published over
40 IEEE journal papers. He can be reached at Dalmatinska 55,11000
Belgrade, Yugoslavia; emilutiv@ubbg.etf.bg.ac.yu.

-
Summer 1996 79

