
An Evaluation of Negative Selection in an Artificial Immune System
for Network Intrusion Detection

Jungwon Kim and Peter J. Bentley

Department of Computer Science
University College London

Gower Street, London
U.K.

Email: {J.Kim, P.Bentley}@cs.ucl.ac.uk

Abstract

This paper investigates the role of negative
selection in an artificial immune system (AIS)
for network intrusion detection. The work
focuses on the use of negative selection as a
network traffic anomaly detector. The results of
the negative selection algorithm experiments
show a severe scaling problem for handling real
network traffic data. The paper concludes by
suggesting that the most appropriate use of
negative selection in the AIS is as a filter for
invalid detectors, not the generation of
competent detectors.

1 INTRODUCTION

The biological immune system has been successful at
protecting the human body against a vast variety of
foreign pathogens (Tizard, 1995). A growing number of
computer scientists have carefull y studied the success of
this competent natural mechanism and proposed computer
immune models for solving various problems including
fault diagnosis, virus detection, and mortgage fraud
detection (Dasgupta, 1998; Kephart et al,1995).

Among these various areas, intrusion detection is a
vigorous research area where the employment of an
artificial immune system (AIS) has been examined
(Dasgupta, 1998; Kim and Bentley, 1999b; Hofmeyr,
1999; Hofmeyr and Forrest, 2000; Forrest and Hofmeyr,
2000). The main goal of intrusion detection is to detect
unauthorised use, misuse and abuse of computer systems
by both system insiders and external intruders. Currently
many network-based intrusion detection systems (IDS’s)
have been developed using diverse approaches (Mykerjee
et al, 1994). Nevertheless, there still remain unresolved
problems to build an effective network-based IDS (Kim
and Bentley, 1999a). As one approach of providing the
solutions of these problems, previous work (Kim and
Bentley, 1999a) identified a set of general requirements
for a successful network-based IDS and three design goals

to satisfy these requirements: being distributed, self-
organising and lightweight. In addition, Kim and Bentley
(1999a) introduced a number of remarkable features of
human immune systems that satisfy these three design
goals. It is anticipated that the adoption of these features
should help the construction of an effective network-
based IDS.

An overall artificial immune model for network
intrusion detection presented in (Kim and Bentley, 1999b)
consists of three different evolutionary stages: negative
selection, clonal selection, and gene library evolution.
This model is not the first attempt to develop an AIS for
network intrusion detection. Various approaches to build
an AIS have been attempted mainly by implementing only
a small subset of overall human immune mechanisms
(Dasgupta, 1998). This is because the nature of human
immune systems is very complicated and sophisticated
and thus it is very diff icult to implement perfect human
immune processes on a computer. However, as seen from
other immunology literature (Paul, 1993; Tizard, 1995),
an overall immune reaction is the carefully co-ordinated
result of numerous components such as cells, chemical
signals, enzyme, etc. Therefore, the omission of crucial
components in order to make the development of AIS
simpler and more applicable may detrimentally affect the
performance of an AIS. This implies that appropriate
artificial immune responses can be expected only if the
roles of crucial components of human immune systems
are correctly understood and they are implemented in the
right way.

In this paper, we continue our effort to understand the
roles of important components of artificial immune
systems especially for providing appropriate artificial
immune responses against network intrusions. Following
our previous work identifying three different evolutionary
stages: negative selection, clonal selection, and gene
library evolution, of AIS by extensive literature study
(Kim and Bentley, 1999a; 1999b), this paper focuses on
the investigation of the roles of first stage: negative
selection. With implementation details of this stage, this
work presents how and which aspects of negative

selection can contribute to the development of an
effective network-based IDS.

2 BACKGROUND

2.1 NEGATIVE SELECTION OF THE HUMAN
IMMUNE SYSTEM

An important feature of the human immune systems is its
ability to maintain diversity and generality. It is able to
detect a vast number of antigens with a smaller number of
antibodies. In order to make this possible, it is equipped
with several useful functions (Kim and Bentley, 1999a).
One such function is the development of mature
antibodies through the gene expression process. The
human immune system makes use of gene libraries in two
types of organs called the thymus and the bone marrow.
When a new antibody is generated, the gene segments of
different gene libraries are randomly selected and
concatenated in a random order, see figure 1. The main
idea of this gene expression mechanism is that a vast
number of new antibodies can be generated from new
combinations of gene segments in the gene libraries.

G ene L ibrary

A ntigen

A ntibody

Figure 1 Gene Expression Process

However, this mechanism introduces a critical problem.
The new antibody can bind not only to harmful antigens
but also to essential self cells. To help prevent such
serious damage, the human immune system employs
negative selection. This process eliminates immature
antibodies, which bind to self cells passing by the thymus
and the bone marrow. From newly generated antibodies,
only those which do not bind to any self cell are released
from the thymus and the bone marrow and distributed
throughout the whole human body to monitor other living
cells. Therefore, the negative selection stage of the human
immune system is important to assure that the generated
antibodies do not to attack self cells.

2.2 THE NEGATIVE SELECTION ALGORITHM

Forrest et al (1994; 1997) proposed and used a negative
selection algorithm for various anomaly detection
problems. This algorithm defines ‘self’ by building the
normal behaviour patterns of a monitored system. It
generates a number of random patterns that are compared

to each self pattern defined. If any randomly generated
pattern matches a self pattern, this pattern fails to become
a detector and thus it is removed. Otherwise, it becomes a
‘detector’ pattern and monitors subsequent profiled
patterns of the monitored system. During the monitoring
stage, if a ‘detector’ pattern matches any newly profiled
pattern, it is then considered that new anomaly must have
occurred in the monitored system.

This negative selection algorithm has been successfully
applied to detect computer viruses (Forrest et al., 1994),
tool breakage detection and time-series anomaly detection
(Dasgupta, 1998) and network intrusion detection
(Hofmeyr, 1999; Hofmeyr and Forrest, 2000; Forrest and
Hofmeyr, 2000). Besides these practical results,
D’haeseleer (1997) showed several advantages of
negative selection as a novel distributed anomaly
detection approach.

3 ALGORITHM OVERVIEW

This work used a negative selection algorithm to build an
anomaly detector. This was achieved by generating
detectors containing non-self patterns. The overview of
this algorithm is provided in figure 2 and 3. The negative
selection algorithm for network intrusion detection used
in this paper follows the algorithm of Forrest et al (1994,
1997), described in the previous section. ‘Self’ was built
by profili ng the activities of each single network
connection. The detail of self profili ng is described in the
next section.

M atch D e tecto r S et
G enera te
R andom
Strings

R e ject

ye s

n o

S elf Strings

Figure 2 Detector Set Generation of
a Negative Selection Algorithm (Forrest et al, 1995)

M atchD etector S et D e tected
N on-se lfye s

N ew Strings

Figure 3 Non-Self Detection by a Detector Set

Even though this work follows the implementation details
of Forrest et al’s negative selection algorithm, there are
two implementation details different from Forrest et al
(1994, 1997). In the encoding of detectors, each gene of a

detector has an alphabet of cardinality 10 with values
from ‘0’ to ‘9’ and the allele of this gene indicates the
‘cluster number’ of corresponding field of profiles. As
presented in the next section, the self profile built from
the first data set has 33 fields and this number determines
the total number of corresponding genes in the detectors.
From these 33 fields, the values of 28 fields are
continuous and the values of the other 5 fields are
discrete. Specifically, the continuous values of 28 fields
show a wide range of values. In order to handle this
various and broad range of values, an overall range of real
values for each field is sorted. Then, this range is
discretised into a predefined number of clusters. The
lower bound and higher bound of each cluster are
determined by ensuring that each cluster contains the
same number of records. This modification is necessary in
order to save the length of encoded detector.

Furthermore, our implementation of measuring the
similarity between a generated detector and a self profile
is operated at the phenotype level while Forrest et al’s
(1994, 1997) is performed at the genotype level. In order
to measure the similarity between a given detector and a
self, the genotype of a detector is mapped onto a
phenotype. The phenotype mapped from the evolved
genotype is represented in a form of a detector pattern. As
shown in figure 5, a field of a detector phenotype is
represented by an interval having a lower bound and a
higher bound while a field of a self phenotype is
described by one specific value. Hence, the first step of
measuring the similarity checks whether a value of each
field of a self pattern belongs to a corresponding interval
of a detector phenotype. When any value of a self pattern
field is not included in its corresponding interval of a
detector phenotype, these two fields are not matched.
Similarly, for a nominal type of field, two fields match
when the values of f ields are identical.

The final degree of similarity between a given detector
and self example follows the same matching function of
Forrest et al (1994), the r-contiguous matching function.
Thus, the degree of similarity is measured simply by
counting the matching corresponding fields. For instance,
if an activation threshold, r, is set as 2, the detector
phenotype and self phenotype in the figure 4 will match
since two contiguous fields, “Number of Packet” and
“Duration” , match and this number of contiguous
matching fields equals to the activation threshold.
However, if this threshold is set as 3, it is regarded that
two phenotypes do not match.

Detector Phenotype =
 (Number of Packet = [10, 26], Duration = [0.3, 0.85],
 Termination = `half closed‘ , … etc)

Self Phenotype =
 (Number of Packet = 14, Duration = 0.37,
 Termination = `normal‘, ….etc)

Figure 4: A Detector Phenotype and a Self Phenotype

4 NETWORK TRAFFIC DATA VS
NETWORK INTRUSION SIGNATURE

The data chosen for this work was collected for a part of
the ‘ Information Exploration Shootout’ , which is a project
providing several data sets publicly available for
exploration, discovery and collecting the results of
participants1. The set used here was created by capturing
TCP packet headers that passed between the intra-LAN
and external networks as well as within the intra-LAN.
This set consists of five different data sets. The TCP
packet headers of the first set were collected when no
intrusion occurred and the other four sets were collected
when four different intrusions were simulated. These
intrusions are: IP spoofing attack, guessing rlogin or ftp
passwords, scanning attack and network hopping attack.
The details of attack signatures and attack points of the
four different attacks are not available.

The data originally had the fields of network packets
capturing tool’s format such as time stamp, source IP
address, source port, destination IP address, destination
port, etc. However, the primitive fields of captured
network packets were not enough to build a meaningful
profile. Consequently, it was essential to build a data-
profili ng program to extract more meaningful fields,
which can distinguish “normal” and “abnormal” . Many
researchers have identified the security holes of TCP
protocols (Porras and Valdes, 1998; Lee, 1999) and so the
fields used by our profiles were selected based on the
extensive study of this research. They were usually
defined to describe the activities of each single
connection.

The automated profile program was developed to
extract the connection level information from TCP raw
packets and it was used to elicit the meaningful fields of
the first data set.

For each TCP connection, the following fields were
extracted:

� Connection identifier: each connection is defined by
four fields, initiator address, initiator port, receiver
address and receiver port. Thus, these four fields are
included in the profile first in order to identify each
connection.

� Known port vulnerabilities: many network intrusions
attack using various types of port vulnerabilities.
There are fields to indicate whether an initiator port
or a receiver port potentially holds these known
vulnerabilities.

� 3-way handshaking: TCP protocol uses 3-way
handshaking for a reliable communication. When
some network intrusions attack, they often violate the
3-way handshaking rule. Thus, there are fields to
check the occurrences of 3-way handshaking errors.

� Traffic intensity: network activities can be observed
by measuring the intensity over one connection. For
example, number of packets and number of kilobytes

1 Available at http://iris.cs.uml.edu:8080/ network.html.

for one specific connection can describe the normal
network activity of that connection.

Thus, in total, self profile fields had 33 different fields for
the data set. Even though the network profile fields were
extracted to describe a single connection activity, the data
used in this research was too limited to apply this initial
profile. The limit was that the data was collected for a
quite short time, around 15~20 minutes. During this brief
period, most different connections were established only
once. An insufficient quantity of data was collected to
build different connection profiles. Therefore, it was
necessary to group different connections into several
meaningful categories until each category had a sufficient
number of connections to build a profile. Consequently, a
total number of connections for each potential profile
category were counted.

First of all , the data was categorised into two different
groups: ‘ inter-connection’ and ‘ intra-connection’ . Inter-
connection was the group of connections that were
established between internal hosts and external hosts, and
intra-connection was the group of connections that were
established between internal hosts. Furthermore, to
preserve anonymity, all i nternal hosts had a single fake
address ‘2’ and any extra information about external hosts
and network topology was not provided. Therefore, the
profiles according to specific hosts were insuff icient.
Instead, in this research, only the profiles of specific ports
on any hosts were considered.

According to various possible categories, the
established connection number of each profile was
counted. From each case, apart from a profile class that
had more than 100 connections, other profile classes were
again grouped into other different classes until each class
had more than 100 connections. Finally, 13 different self
profiles were built . Their class names and the number of
established connections are shown in table 1.

In table1, the class column of inter-connection is
shown as: { (a,b),(c,d)} , where ‘a’ is an internal host, ‘b’ is
a internal port number, ‘c’ is a external host address and
‘d’ is an external port number. Hence, the connection is
established between (a,b) and (c, d). For the class column
of intra-connection, ‘a’ is an internal host address, ‘b’ is
an internal port number, ‘c’ is an internal host address and
‘d’ is an internal, port number. * indicates ‘any’ host
address and ‘any’ port number. In addition, “well-known”
shows the ports in the range 0 to 1023 are trusted ports.
These ports are restricted to the superuser: a program
must be running as root to listen to a connection. The port
numbers of commonly used IP services, such as ftp,
telnet, http, are fixed and belong to this range. But, many
common network services employ an authentication
procedure and intruders often use them to sniff
passwords. It is worthwhile to monitor these ports
separately from the other ports. Therefore, if the number
of connections for any profile category, which is based on
a specific port on any hosts, is not sufficient, these
categories are regrouped into two new classes, a “well-
known” port and a “not well-known” port.

Table 1: Self Profiles

Inter-connection

Class Number of

Connection

{ (2, *), (*, 80)} 5292

{ (2, *), (*, 53)} 919

{ (2, *), (*, 113)} 255

{ (2, *), (*, 25)} 192

{ (2, *), (*, well-known)} 187

{ (2, *), (*, not well-known)} 756

{ (2, 53), (*, *)} 940

{ (2, 25), (*, *)} 352

{ (2, 113), (*, *)} 145

{ (2, well-known), (*, *)} 114

{ (2, not well-known), (*, *)} 6050

Intra-connection

{ (2, *), (2, well-known)} 190

{ (2, *), (2, not well-known)} 189

5 EXPERIMENT OBJECTIVE

Although previous work using a negative selection
algorithm for anomaly detection (Forrest et al 1994;
Dasgupta 1998; Hofmeyr, 1999) showed promising
results, there had been li ttle effort to apply this algorithm
on vast amounts of data. One distinctive feature of a
network intrusion detection problem is that the size of
data, which defines “self” and “non-self” , is enormous. In
order for this algorithm to be adopted to a network-based
IDS, it is important to understand whether this algorithm
is capable of generating detectors in a reasonable
computing time. In addition, it is essential to examine
whether its tuning method, which derives an appropriate
number of detectors to gain a good non-self detection rate,
works when it is used on the huge size of real network
data. Therefore, a series of experiments were performed
to investigate these two significant features of the
negative selection algorithm.

6 DATA AND PARAMETER SETTING

6.1 SETTING

As presented in section 4, the data used in this work
produced thirteen different self profiles. From 13 different
self sets, one self set, { (2, *), (* , 25)} in table 1, which
has relatively smaller number of examples, 192, was
selected for the following experiments. From the total of
192 examples of the selected self profile, 154 examples
were used for generating detectors and 38 examples were

applied for testing generated detectors. In addition, the
detectors were tested on five different test sets. The first
four sets were collected when four different intrusions
were simulated (as explained in section 4) and the last set
was created by generating random strings. These five sets
have 273, 190, 1151, 273 and 500 examples respectively.

As described in section 3, the negative selection
algorithm used in this paper employed the r-contiguous
matching function. For the following experiments, its
matching threshold should be defined. In order to define
this number, the formulas to approximate the appropriate
number of detectors when a false negative error is fixed
(D’haeseleer, 1997; Forrest et al, 1994) were used. These
formulas are as follows (Forrest et al, 1994) :

]1/)1)([(���� mmrlmP -r
m . .….. (1)

s

m N
P

1
 � ……………………….. (2)

where,

string, selfchosen randomly a
 and stringdetector abetween y probabilit matching the�

mP

 strings, self ofnumber the�
sN

 y,cardinalitalphabet genotypedetector the�m
 andlength string genotypedetector the�l

r = the threshold of r-contiguous matching function.

Since lm,,N s are already known, r can be calculated by

using equation (1) and (2). The calculated r was used in
the following equation in order to derive an appropriate
number of detectors, rN , and a total number of trials to

generate these detectors,
0r

N , when the false negative

error, fP , is fixed (Forrest et al, 1994).

ln

m

f
r P

P
N

�

� …………………(3) and

 � � SN
mm

f
r

PP

P
N

��

	

1

ln

0 …………(4)

The selected self set, { (2, *), (*, 25)} in table 1, was used
for calculating rN and

0r
N when fP is fixed. Table 2

shows calculated rN and
0r

N using (3) and (4) when

fP and r have various values.

(D’haeseleer, 1997; Forrest, et al, 1994) showed that
the larger matching threshold drives the creation of less
general detectors and thus it requires a larger number of
detectors but a smaller number of detector generation
retrials. This is because less general detectors are easier to

avoid the matching a self profile. rN and
0r

N in table 2

follows the same tendency.

Table 2 Number of required detectors, Nr and number of trials

to generate required number of detectors, Nr0
 when false

negative error, Pf, and the thresholdr of r-contiguous matching

function are given. These numbers are calculated when a self
string length, l = 33, an alphabet cardinality, m = 10 and the

number of self strings, SN = 192.

r = 3 r = 4fP

rN
0r

N rN
0r

N

0.2 51 21953 535 955

0.1 73 31382 766 1366

0.05 95 40829 997 1777

0.01 146 62765 1532 2733

Even though this formula is clearly useful to predict
the appropriate number of detectors and its generation
number, its predicted number showed how infeasible this
approach is when it is applied on a more complicated but
more realistic search space. For instance, when the
expected false negative error rate is fixed as 20%, its
predicted detector generation trial number is 51 and the
appropriate number of generated detectors is 21935 for
the matching threshold is 3. Similarly, when we define the
matching threshold as 4, it predicted 535 for the former
and 955 for the latter. In addition, it was observed that
when we fixed the matching threshold number as four and
ran the system, the system could not manage to generate
any single valid detector after one day. None of these
cases seem to provide any feasible test case in terms of
computing time. This results certainly did not follow the
predicted detector generation trial number.

Thus, for the following experiments, we generated
valid detectors by setting a matching threshold number
that allowed a system to generate a valid detector in a
reasonable time. It was observed that the average time of
single successful detector generation took about 70sec
CPU time and the average number of trials to generate a
valid detector was 2~3 when a matching threshold was
nine. These results were gained after running the negative
selection algorithm for preliminary experiments. This
number is used as the matching threshold for the
following experiments. The details of these experiment
results are described in the next section.

7 EXPERIMENT RESULT

Five different sets of detectors were generated after the
AIS with the negative selection was run five times. Even
though the matching threshold, 9, gave reasonable
computing time to generate a valid detector, it requires a
large number of detectors to gain a good non-self

detection rate. After taking into account practically
reasonable time to generate a whole data set, up to 1000
valid detectors were generated per run. All experiments
were run on a PC with AMD K6-2 400Mhz processor and
128M RAM.

Table 4 Time is an avarage time of single detector generation
and Trial is an average trial number to generate a single detector.

The average values are followed by the standard deviations in
parentheses.

System
Run

Time (Sec) Detector
Generation

Trial
1 58.71(26.85) 2.80(2.16)
2 67.29(28.88) 2.21(1.65)
3 73.75(33.72) 2.81(2.22)
4 78.48(39.86) 3.12(2.69)
5 69.64(26.62) 2.72(2.07)

Average 71.81(32.75) 2.63(2.14)

Table 3 shows the average time of single successful
detector generation and the average number of trials to
generate a valid detector. Compared to the result when the
matching threshold is four, which did not generate any
single detector after 24 hours, these results certainly look
more applicable. We monitored five different non-self
sets and one previously unseen self sets after every 100
detector generation and the monitor results of five
different runs are shown in table 4. The overall non-self
detection rate was very poor: less than 16%. In particular,
the non-self detection rate for the last intrusion set, which
was artificially generated by random strings, is extremely
low and its maximum average non-self detection rate
reaches only 2.28%. In addition, its average false positive
detection rate, which is self detection rate by a detector
set, shows 12.63% and this rate is not hugely different
from the other four average non-self detection rates

except intrusion 5. This implies that the collected self and
non-self sets perhaps have some overlapping patterns
because they showed quite similar detection rates. Thus
generated detector sets completely failed to distinguish
the hidden self and non-self patterns.

These poor results were anticipated. This is because the
matching threshold was set in order to obtain a reasonable
detector generation time. If, for example, we wanted a
more usable 80% non-self detection rate, 643775165
detectors would be required (this number is also obtained
from equation 3). The largest size of a generated detector
set, 1000, was much smaller than this number and this
caused such poor results. In addition, each run already
took about 20 hours2 to generate 1000 detectors. If we
wished to generate 643775165 detectors, it would require
12517850.4 hours, or about 1,429 years on the same
computer. According to Moore's Law, the processing
speed of computers doubles every 18 months. We would
have to wait around 35 years before the average
processing speed of computers became fast enough to
generate these detectors in an hour - and this is for just
15~20 minutes of a tiny subset of the network traff ic data.

8 ANALYSIS

In contrast to the promising results shown in Hofmeyr’s
negative selection algorithm for network intrusion
detection (Hofmeyr, 1999; Hofmeyr and Forrest, 2000),
the results of these experiments raise doubt whether this
algorithm should be used for network intrusion detection.
In order to answer this question, the negative selection
algorithm for network intrusion detection is analysed in
detail .

The main problem of the negative selection algorithm
is a severe scaling problem. Unlike previous work using

2 Since it took, on average, 72 seconds to generate each detector, 72000
seconds were needed to produce 1000 detectors. 72000 seconds are 20
hours.

Table 3 The mean and variance values of intrusion and self detection rates when detector set size varies
The means values are followed by the variances in the parentheses.

Num. Of
Detectors

Intrusion1

(%)

Intrusion 2

(%)

Intrusion 3

(%)

Intrusion 4

(%)

Intrusion 5

(%)

Test Self Set

(%)

100 9.45(2.11) 10.11(8.50) 11.14(9.44) 10.62(4.03) 0.48(0.012) 7.89(17.31)

200 11.72(5.37) 11.58(13.71) 12.98(11.52) 12.89(10.43) 0.88(0.092) 9.47(36.70)

300 12.53(4.25) 11.89(13.24) 13.73(9.48) 13.63(9.15) 1(0.12) 10(29.08)

400 13.33(2.79) 12.32(11.30) 14.58(10.18) 14.36(6.87) 1.28(0.112) 10.53(31.16)

500 13.55(3.15) 12.74(13.63) 14.89(10.40) 14.51(7.35) 1.36(0.068) 11.05(25.62)

600 13.77(3.80) 13.16(11.91) 15.07(10.24) 14.65(8.12) 1.68(0.412) 11.58(29.78)

700 13.77(3.80) 13.16(11.91) 15.26(9.46) 14.65(8.12) 2.04(0.388) 11.58(29.78)

800 13.92(4.09) 13.26(11.27) 15.45(10.09) 14.80(8.22) 2.04(0.388) 11.58(29.78)

900 14.14(4.13) 13.47(10.47) 15.67(9.69) 15.02(8.52) 2.08(0.352) 12.63(46.40)

1000 14.21(4.32) 14.08(11.52) 15.90(8.71) 15.09(8.68) 2.28(0.312) 12.63(46.40)

the negative selection algorithm for anomaly detection,
here we apply a much larger “self” set to the negative
selection algorithm. The definition of larger “self” set was
essential to cover diverse types of network intrusions. For
instance, (Hofmeyr 1999; Hofmeyr and Forrest, 2000)
defines “self” as a set of normal pairwise connections
between computers. These include connections between
two computers in the LAN and between one computer in
the LAN and external computers. The connection between
computers is defined by “data-path-triple”: (the source IP
address, the destination IP address, the port called for this
connection). This self definition is chosen based on the
work by (Heberlein, et al, 1990). However, as other IDS
literature pointed out (Lee, 1999), this self definition is
very limited in order to detect various types of network
intrusions and it will certainly be impossible to detect
some intrusions that occur within a single normal
connection such as unauthorised access from a remote
machine.

However, as observed in section 4, when the self
definition widens, a binary string to encode a detector
lengthens. As the result of long length of binary detectors,
an appropriate number of detectors to gain an acceptable
false negative error becomes huge and thus requires an
unacceptably long computation time. Our previous
experiment results clearly show this problem.

It should be noted that Hofmeyr (1999) developed a
refined theory and multiple secondary representations and
these help to reduce the number of trials to generate
detectors on structured self as much as three orders
magnitude less. These methods made the distribution of a
self set clump and it resulted in the reduction of the
number of detector generation trials. However, the refined
theory and secondary representations add extra space and
computing time. More importantly, all of the suggested
secondary representations, such as pure permutation,
imperfect hashing and substring hashing, are matching
rules which check matching only on genotypes.
Unfortunately, matching rules that operate only at the
genotype level have a weakness to be applied for a
network intrusion detection problem. This deficiency can
be explained by unravelli ng the problem of r-contiguous
matching function.

We used the r-contiguous rule to check the match
between a given detector and antigen. The main purpose
of using it was in order to employ the formula to
approximate an appropriate number of detectors to gain a
certain non-self detection rate. However, the r-contiguous
matching rule is too simple to determine the matching
between rather complicated and high-dimensional
patterns. It has been already known that most rules to
represent intrusion signatures describe correlation among
significant network connection events and temporal co-
occurrences of events (Lee, 1999; Porras, 1998). Since the
r-contiguous bit matching only measures the contiguous
bits of genotypes of given two strings, it is hard to
guarantee that the r-contiguous bit matching can catch this
kind of correlation from given self and non-self patterns.
The wider range of self definition shown in section 4 is

also suggested in order to extract this type of correlation
from given self and non-self network traffic examples.

But, if any new matching function is employed,
D’haeseleer’s (1997) formula is no longer valid. There is
no way to tune the right number of detectors for negative
selection. Therefore, this diff iculty may force the negative
selection algorithm to adopt an arbitrary number of
detectors and this may cause an unexpectedly low
detection accuracy or ineff icient computation by
generating more than suff icient number of detectors. In
addition, D’haeseleer’s (1997) new detector generation
algorithms using a linear-time algorithm and a greedy
algorithm that guarantees a liner time of detector
generation is also not applicable when a different
matching function is used.

In summary, it is necessary to use a more sophisticated
matching function to determine the degree of correlation
among significant network connection events and
temporal co-occurrences of events. This requires deriving
a new way to tune an appropriate number of detectors,
which can be used for more sophisticated matching
function.

These drawbacks of the negative selection algorithm
made the AIS struggle to monitor vast amount of a
network self set despite its other important features3.
Consequently, the initial results of our experiments
motivated us to re-define the role of negative selection
stage within an overall network-based IDS and design a
more applicable negative selection algorithm, which
follows a newly defined role. As much of the other
immunology literature (Tizard, 1995) addresses that the
antigen detection powers of human antibodies rise from
the evolution of antibodies via a clonal selection stage.
While the negative selection algorithm allows the AIS to
be an invaluable anomaly detector, its infeasibili ty to be
applied on a real network environment is caused from
allocating a rather overambitious task to it. To be more
precise, the job of a negative selection stage should be
restricted to tackle a more modest task that is closer to the
role of negative selection of human immune system. That
is simply filtering the harmful antibodies rather than
generating competent ones. This view has been
corroborated by further work (Kim and Bentley, 2001)
which has recently shown how succesful the use of clonal
selection with a negative selection operator can be for this
type of problem.

3 Hofmeyr and Forrest (2000)’s final system employs some other
extensions to support the operation of AIS under a real network
environment. Among them, affinity maturation and memory cell
generation follow the clonal selection concept and these provide
a kind of evolution of a detector set distributed on monitored
hosts. However, it still uses only the negative selection
algorithm to generate an initial detector set. Even though it may
conform to human immune systems more closely, this approach
could require excessive computation time to generate the initial
detector set, if a broader definition of self is used. In addition,
the usefulness of initial detectors is not proven before they are
distributed to other hosts. This may also cause a waste of other
computing resources.

9 CONCLUSIONS

This paper has investigated the role of negative selection
in an artificial immune system (AIS) for network
intrusion detection. The negative selection stage within
our AIS was implemented following the algorithm created
by Forrest et al (1994; 1997) and applied to real network
data. The experiments showed the infeasibil ity of this
algorithm for this application: the computation time
needed to generate a sufficient number of detectors is
completely impractical.

This result directs this research to re-define the role of
negative selection algorithm within our overall artificial
immune system framework. Current work is now
investigating the intrusion detection mechanism of the
clonal selection stage. A new understanding of the task of
the clonal selection stage has now resulted in the
development of a more appropriate use for negative
selection as an operator within a novel clonal selection
algorithm (Kim and Bentley, 2001).

References

D’haeseleer, P, (1997), “A Distributed Approach to
Anomaly Detection” , ACM Transactions on Information
System Security. http://www.cs.unm.edu/~patrik/

Dasgupta, D., (1998), “An Overview of Artificial Immune
Systems and Their Applications” , In Dasgupta, D.
(editor). Artificial Immune Systems and Their
Applications, Berlin: Springer-Verlag, pp.3-21.

Forrest, S. et al, (1994) “Self-Nonself Discrimination in a
Computer” , Proceeding of 1994 IEEE Symposium on
Research in Security and Privacy, Los Alamos, CA: IEEE
Computer Society Press.

Forrest, S., et al, (1997), “Computer Immunology” ,
Communications of the ACM, 40(10), 88-96.

Forrest, S and Hofmeyr, S. (2000) "Immunology as
Information Processing", in Design Principles for Immune
Systems and Other Distributed Autonomous Systems, (Ed)
Segal, L.A. & Cohen, I. R. eds., Oxford University Press.

Heberlein, L. T., et al. (1990), "A Network Security
Monitor", Proceeding of 1990 Symposium on Research in
Security and Privacy, Oakland, CA, pp.296-304, May,
1990.

Hofmeyr, S., (1999) An Immunological Model of
Distributed Detection and Its Application to Computer
Security, Phd Thesis, Dept of Computer Science,
University of New Mexico.

Hofmeyr, S., and Forrest, S., (2000), “Architecture for an
Artificial Immune System”, Evolutionary Computation,
vol.7, No.1, pp.45-68.

Kephart, J. O., et al, (1995), "Biologically Inspired
Defenses Against Computer Viruses", the Proceeding of

14th Intl. Joint Conf. on Artificial Intelli gence, Montreal,
August, pp.985-996.

Kim, J. and Bentley, P. (1999a), “The Human Immune
System and Network Intrusion Detection” , 7th European
Conference on Intelli gent Techniques and Soft Computing
(EUFIT '99), Aachen, Germany.

Kim, J. and Bentley, P. (1999b), “The Artificial Immune
Model for Network Intrusion Detection, 7th European
Conference on Intelli gent Techniques and Soft Computing
(EUFIT’99), Aachen, Germany.

Kim, J. and Bentley, P. (2000), “Negative Selection
within an Artificial Immune System for Network
Intrusion Detection” , the 14th Annual Fall Symposium of
the Korean Information Processing Society, Seoul, Korea.

Kim, J. and Bentley, P. (2001), The Artificial Immune
System for Network Intrusion Detection: An
Investigation of Clonal Selection with a Negative
Selection Operator. Submitted to CEC2001, the Congress
on Evolutionary Computation, Seoul, Korea, May 27-30,
2001.

Lee, W., (2000) A Data Mining Framework for
Constructing Features and Models for Intrusion
Detection Systems, PhD Thesis, Dept of Computer
Science, Columbia University.

Mykerjee, B., et al, (1994), "Network Intrusion
Detection", IEEE Network, Vol.8, No.3, pp.26-41.

Paul, W. E., (1993), “The Immune System: An
Introduction” , in Fundamental Immunology 3rd Ed., W. E.
Paul (Ed), Raven Press Ltd.

Porras, P. A., (1992), STAT: A State Transition Analysis
Tool for Intrusion Detection, MSc Thesis, Department of
Computer Science, University of California Santa Babara.

Porras, P. A. and Valdes, A., (1998), “Live Traff ic
Analysis of TCP/IP Gateways” , Proceeding of ISOC
Symposium of Network and Distributed System Security.
http://www.csl.sri.com/emerald/downloads.html

Tizard, I. R., (1995), Immunology: Introduction, 4th Ed,
Saunders College Publishing.

