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Abstract

This paper investigates the role of negative
selection in an artificial immune system (AIS)
for network intrusion detection. The work
focuses on the use of negative selection as a
network traffic anomaly detector. The results of
the negative selection agorithm experiments
show a severe scaling problem for handling real
network traffic data. The paper concludes by
suggesting that the most appropriate use of
negative selection in the AIS is as a filter for
invalid detectors, not the generation of
competent detectors.

1 INTRODUCTION

The biologicd immune system has been succesdul at
proteding the human body against a vast variety of
foreign pathogens (Tizard, 1995. A growing number of
computer scientists have caefully studied the success of
this competent natural mechanism and proposed computer
immune models for solving various problems including
fault diagnosis, virus detedion, and mortgage fraud
detedion (Dasgupta, 1998 Kephart et a,1995).

Among these various aress, intrusion cetedion is a
vigorous reseach area where the employment of an
artificial immune system (AIS) has been examined
(Dasgupta, 1998, Kim and Bentley, 1999b; Hofmeyr,
1999 Hofmeyr and Forrest, 2000; Forrest and Hofmeyr,
2000). The main goal of intrusion detedion is to deted
unauthorised use, misuse and abuse of computer systems
by bah system insiders and external intruders. Currently
many network-based intrusion dcetedion systems (IDS's)
have been developed using dverse gproadches (Mykerjee
et a, 199). Nevertheless there till remain urresolved
problems to buld an effedive network-based IDS (Kim
and Bentley, 1999%). As one gproach of providing the
solutions of these problems, previous work (Kim and
Bentley, 1999%) identified a set of general requirements
for asuccessul network-based IDS and three design g&ls

to satisfy these requirements. being dstributed, self-
organising and lightweight. In addition, Kim and Bentley
(1999a) introduced a number of remarkable feaures of
human immune systems that satisfy these three design
goals. It is anticipated that the adoption of these feaures
shoud help the onstruction d an effedive network-
based IDS.

An oweral artificial immune model for network
intrusion detedion presented in (Kim and Bentley, 1999b)
consists of three different evolutionary stages. negative
seledion, clonal seledion, and gene library evolution.
This model is nat the first attempt to develop an AIS for
network intrusion detedion. Various approaches to buld
an AlS have been attempted mainly by implementing only
a small subset of overall human immune mechanisms
(Dasgupta, 1998). This is because the nature of human
immune systems is very complicaed and sophisticaed
and thus it is very difficult to implement perfead human
immune processes on a awmputer. However, as £a from
other immunology literature (Paul, 1993; Tizard, 1995),
an oweral immune readion is the caefully co-ordinated
result of numerous components guch as cdls, chemicd
signals, enzyme, etc. Therefore, the omisson d crucial
comporents in order to make the development of AIS
simpler and more gplicable may detrimentally affed the
performance of an AIS. This implies that appropriate
artificial immune responses can be expeded only if the
roles of crucial components of human immune systems
are orredly understood and they are implemented in the
right way.

In this paper, we @ntinue our effort to understand the
roles of important components of artificial immune
systems espedally for providing appropriate atificial
immune resporses against network intrusions. Following
our previous work identifying threedifferent evolutionary
stages. negative seledion, clonal seledion, and gene
library evolution, of AIS by extensive literature study
(Kim and Bentley, 199%; 1999b), this paper focuses on
the investigation of the roles of first stage: negative
seledion. With implementation details of this gage, this
work presents how and which aspeds of negative



selection can contribute to the development of an
effective network-based IDS.

2 BACKGROUND

21 NEGATIVE SELECTION OF THE HUMAN
IMMUNE SYSTEM

An important feature of the human immune systemsis its
ability to maintain diversity and generality. It is able to
detect a vast number of antigens with a smaller number of
antibodies. In order to make this possible, it is equipped
with several useful functions (Kim and Bentley, 1999a).
One such function is the development of mature
antibodies through the gene expression process. The
human immune system makes use of gene librariesin two
types of organs called the thymus and the bone marrow.
When a new antibody is generated, the gene segments of
different gene libraries are randomly selected and
concatenated in a random order, see figure 1. The main
idea of this gene expression mechanism is that a vast
number of new antibodies can be generated from new
combinations of gene segmentsin the gene libraries.
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Figure 1 Gene Expresson Process

However, this mechanism introduces a aiticd problem.
The new antibody can bind not only to harmful antigens
but aso to esentia self cdls. To help prevent such
serious damage, the human immune system employs
negative seledion. This process eliminates immature
antibodes, which bind to self cdls passing by the thymus
and the bone marrow. From newly generated antibodes,
only those which do not bind to any self cdl are released
from the thymus and the bone marrow and distributed
throughout the whole human body to monitor other living
cdls. Therefore, the negative seledion stage of the human
immune system is important to assure that the generated
antibodes do not to attadk self cdls.

22 THENEGATIVE SELECTION ALGORITHM

Forrest et a (1994; 1997) proposed and used a negative
seledion agorithm for various anomaly detedion
problems. This algorithm defines ‘salf’ by building the
normal behaviour patterns of a monitored system. It
generates a number of randam patterns that are compared

to eat sef pattern defined. If any randomly generated
pattern matches a self pattern, this pattern fails to become
adetedor and thusit is removed. Otherwise, it becomes a
‘detedor’ pattern and monitors sibsequent profiled
patterns of the monitored system. During the monitoring
stage, if a ‘detedor’ pattern matches any newly profiled
pattern, it is then considered that new anomaly must have
occurred in the monitored system.

This negative seledion algorithm has been successfully
applied to deted computer viruses (Forrest et a., 1994,
tod bre&kage detedion and time-series anomaly detedion
(Dasgupta, 1998 and network intrusion detedion
(Hofmeyr, 1999 Hofmeyr and Forrest, 200Q Forrest and
Hofmeyr, 2000. Besides these pradicd results,
D'haesclea (1997 showed several advantages of
negative seledion as a novel distributed anomaly
detedion approach.

3 ALGORITHM OVERVIEW

This work used a negative seledion algorithm to build an
anomaly detedor. This was adieved by generating
detedors containing non-self patterns. The overview of
this algorithm is provided in figure 2 and 3. The negative
seledion agorithm for network intrusion detedion used
in this paper follows the dgorithm of Forrest et a (1994,
1997), described in the previous sedion. ‘Self’ was built
by profiling the adivities of eah singe network
conredion. The detail of self profiling is described in the
next sedion.
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Figure 2 Detedor Set Generation o
aNegative Seledion Algorithm (Forrest et a, 1995)
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Figure 3 Non-Sdf Detedion by a Detedtor Set

Even though this work foll ows the implementation detail s
of Forrest et a’s negative seledion algorithm, there ae
two implementation cetails different from Forrest et a
(1994, 1997). In the encoding of detedors, ead gene of a



detedor has an aphabet of cadinaity 10 with values
from ‘0’ to ‘9" and the allele of this gene indicates the
‘cluster number’ of correspondng field of profiles. As
presented in the next sedion, the self profile built from
the first data set has 33 fields and this number determines
the total number of correspondng genes in the detedors.
From these 33 fields, the values of 28 fields are
continuous and the values of the other 5 fields are
discrete. Spedficadly, the continuous values of 28 fields
show a wide range of values. In order to hande this
various and broad range of values, an oweral range of red
values for each field is rted. Then, this range is
discretised into a predefined number of clusters. The
lower bound and hgher bound of ead cluster are
determined by ensuring that each cluster contains the
same number of records. This modificationis necessry in
order to save the length of encoded detedor.

Furthermore, our implementation of measuring the
similarity between a generated detedor and a self profile
is operated at the phenotype level while Forrest et a’'s
(1994, 1997) is performed at the genotype level. In order
to measure the similarity between a given detedor and a
self, the genotype of a detedor is mapped ono a
phenotype. The phenctype mapped from the evolved
genotypeis represented in aform of a detedor pattern. As
shown in figure 5, a field of a detedor phenotype is
represented by an interval having a lower bound and a
higher bound while a field of a self phenotype is
described by one spedfic value. Hence, the first step of
measuring the similarity cheds whether a value of eat
field of a self pattern belongs to a corresponding interval
of a detector phenotype. When any value of a self pattern
field is nat included in its correspondng interval of a
detedor phenotype, these two fields are not matched.
Similarly, for a nominal type of field, two fields match
when the values of fields are identicd.

The final degreeof similarity between a given detedor
and self example follows the same matching function o
Forrest et a (1994), the r-contiguous matching function.
Thus, the degree of similarity is measured simply by
courting the matching corresponding fields. For instance,
if an adivation threshdld, r, is st as 2, the detedor
phenotype and self phenotype in the figure 4 will match
since two contiguous fields, “Number of Padet” and
“Duration’, match and this number of contiguous
matching fields equals to the adivation threshold.
However, if this threshold is st as 3, it is regarded that
two phenotypes do not match.

Detector Phenotype =
( Number of Packet = [10, 26], Duration = [0.3, 0.85],
Termination = “half closed', ... etc)

Self Phenotype =
( Number of Packet = 14, Duration = 0.37,
Termination = “normal’, ....etc)

Figure 4: A Detedor Phenctype and a Self Phenotype

4 NETWORK TRAFFIC DATA VS
NETWORK INTRUSION SIGNATURE

The data dhosen for this work was colleded for a part of

the ‘Information Exploration Shootout’, which is a projed

providing several data sets publicly available for
exploration, discovery and colleding the results of
participants’. The set used here was creaed by capturing

TCP padket headers that passed between the intra-LAN

and external networks as well as within the intra-LAN.

This st consists of five different data sets. The TCP

padket healers of the first set were mlleded when no

intrusion occurred and the other four sets were mlleded
when four different intrusions were simulated. These
intrusions are: 1P spoofing attack, guessing rlogin or ftp
passwords, scanning attack and network hopping attack.

The details of attadk signatures and attack points of the

four different attadks are not avail able.

The data originally had the fields of network packets
cgpturing tool’s format such as time stamp, source IP
address source port, destination |P address destination
port, etc. However, the primitive fields of captured
network packets were not enough to buld a meaningful
profile. Consequently, it was esential to buld a data
profiing pogram to extrad more meaningful fields,
which can dstingush “normal” and “abnormal”. Many
reseachers have identified the seaurity hoes of TCP
protocols (Porras and Valdes, 1998; Leg 1999 and so the
fields used by ou profiles were seleded based on the
extensive study of this reseach. They were usualy
defined to describe the adivities of eah singe
conredion.

The aitomated profile program was developed to
extrad the @nnedion level information from TCP raw
padkets and it was used to dlicit the meaningful fields of
the first data set.

For eath TCP conredion, the following fields were
extraded:

e Connection identifier: each connection is defined by
four fields, initiator address, initiator port, receiver
address and receiver port. Thus, these four fields are
included in the profile first in order to identify each
connection.

e Known port vulnerabilities: many network intrusions
attack using various types of port vulnerabilities.
There are fields to indicate whether an initiator port
or a recelver port potentially holds these known
vulnerabilities.

e 3-way handshaking: TCP protocol uses 3-way
handshaking for a reliable communication. When
some network intrusions attack, they often violate the
3-way handshaking rule. Thus, there are fields to
check the occurrences of 3-way handshaking errors.

e Traffic intensity: network activities can be observed
by measuring the intensity over one connection. For
example, number of packets and number of kilobytes

* Available at http://iris.cs.uml.edu:8080/ network.html.




for one spedfic connedion can describe the normal
network adivity of that connedion.

Thus, in total, self profile fields had 33 dfferent fields for
the data set. Even though the network profil e fields were
extraded to describe asinge mnnedion adivity, the data
used in this research was too limited to apply this initial
profile. The limit was that the data was colleded for a
quite short time, around 15~20 minutes. During this brief
period, most different connedions were established only
once An insufficient quantity of data was colleded to
build dfferent connedion profiles. Therefore, it was
necessary to group dfferent connections into several
meaningful caegories until each caegory had a sufficient
number of connedions to huild a profile. Consequently, a
total number of connedions for ead potential profile
caegory were aunted.

First of al, the data was categorised into two different
groups. ‘inter-connedion’ and ‘intra-conredion’. Inter-
conredion was the group of connedions that were
established between internal hosts and external hosts, and
intra-conredion was the group of conredions that were
established between internal hosts. Furthermore, to
preserve anonymity, all internal hosts had a single fake
address‘2’ and any extrainformation about external hosts
and retwork topology was not provided. Therefore, the
profiles acording to spedfic hosts were insufficient.
Instead, in this reseach, only the profiles of spedfic ports
onany hosts were mnsidered.

According to various possble cdegories, the
established conredion number of ead profile was
courted. From ead case, apart from a profile dass that
had more than 100 connedions, other profile dasses were
again grouped into other different classes until ead class
had more than 10 connedions. Finaly, 13 dfferent self
profil es were built. Their class names and the number of
established conredions are shown in table 1.

In tablel, the dass column of inter-connedion is
shown as: { (a,b),(c,d)}, where‘a isaninternal host, ‘b’ is
ainterna port number, ‘c’ is a external host addressand
‘d is an external port number. Hence, the @wnnedion is
established between (a,b) and (c, d). For the dasscolumn
of intra-connedion, ‘@ is an internal host address ‘b’ is
aninternal port number, ‘¢’ is an internal host addressand
‘d" is an internal, port number. * indicaes ‘any’ host
addressand ‘any’ port number. In addition, “well-known”
shows the ports in the range 0 to 123 are trusted pats.
These ports are restricted to the superuser: a program
must be running as roat to listen to a wnnection. The port
numbers of commonly used IP services, such as ftp,
telnet, http, are fixed and belong to this range. But, many
common network services employ an authentication
procedure and intruders often use them to sniff
passwords. It is worthwhile to monitor these ports
separately from the other ports. Therefore, if the number
of connedions for any profile cdegory, which is based on
a spedfic port on any hosts, is not sufficient, these
caegories are regrouped into two new classes, a “well-
known” port and a* not well-known” port.

Table 1: Self Profiles

I nter-connection
Class Number of
Connedion
{(2,%), (*, 80)} 5292
{(2,*), (*, 53)} 919
{(2,%), (*, 113} 255
{(2,7), (*, 25} 192
{(2, *), (*, well-known)} 187
{(2, *), (*, not well-known)} 756
{(2,53), (*,*)} 940
{(2,25), (*, )} 352
{(2,113), (*, *)} 145
{(2, well-known), (*, *)} 114
{(2, not well-known), (*, *)} 6050
I ntra-connection
{(2, *), (2, well-known)} 190
{(2, *), (2, not well-known)} 189

5 EXPERIMENT OBJECTIVE

Although previous work using a negative seledion
algorithm for anomaly detedion (Forrest et a 1994
Dasgupta 1998 Hofmeyr, 1999 showed promising
results, there had been little dfort to apply this algorithm
on vast amounts of data. One distinctive feaure of a
network intrusion detedion problem is that the size of
data, which defines “self” and “non-self”, is enormous. In
order for this algorithm to be adopted to a network-based
IDS, it is important to understand whether this algorithm
is cgpable of generating detedors in a reasonable
computing time. In addition, it is essentia to examine
whether its tuning method, which derives an appropriate
number of detedorsto gain agoodnon-self detedion rate,
works when it is used on the huge size of red network
data. Therefore, a series of experiments were performed
to investigate these two significant feaures of the
negative seledion algorithm.

6 DATA AND PARAMETER SETTING

6.1 SETTING

As presented in sedion 4, the data used in this work
produced thirteen different self profiles. From 13 dfferent
self sets, one self set, {(2, *), (*, 25)} in table 1, which
has relatively smaller number of examples, 192 was
seleded for the following experiments. From the total of
192 examples of the seleded self profile, 154 examples
were used for generating detedors and 38 examples were



applied for testing generated detedors. In addition, the
detedors were tested on five different test sets. The first
four sets were wlleded when four different intrusions
were simulated (as explained in sedion 4) and the last set
was creaed by generating random strings. These five sets
have 273 190, 1151, 273 and 500 examples respedively.

As described in sedion 3, the negative seledion
algorithm used in this paper employed the r-contiguous
matching function. For the following experiments, its
matching threshold should be defined. In order to define
this number, the formulas to approximate the gpropriate
number of detedors when a false negative eror is fixed
(D’haeselea, 1997 Forrest et al, 1994) were used. These
formulas are as follows (Forrest et al, 1994 :

P o~m'[(I—r)(m-1/m+1]. ...... (1)

where,

P, = thematchin
arandomlychoserself string,

N, = thenumber of self strings,

m = the detector genotypeal phabet cardinality,
| = thedetector genotypestring length and

r = the threshold of r-contiguous matching function.

SinceNg,m, | are already known, r can be calculated by

using equation (1) and (2). The calculated r was used in
the following equation in order to derive an appropriate
number of detectors, N,, and a total number of trials to

generate these detectors, N, , when the false negative
error, P; , isfixed (Forrest et a, 1994).

—InP; - J
T an
r Pm
—InP;
o ™ Pm X (1_ Pm)NS ............ (4)

The seleded self set, {(2, *), (*, 25)}in table 1, was used
for cdculating N,and N, when P;is fixed. Table 2

shows cdculated N, and N, using (3) and (4)
P; and r have various values.

when

(D’ haeselea, 1997 Forrest, et al, 1994) showed that
the larger matching threshold drives the aeaion of less
general detedors and thus it requires a larger number of
detedors but a smaler number of detedor generation
retrials. Thisis becaise lessgeneral detedors are eaier to

robabiliy betweera detectostringand

avoid the matching a self profile. N, and N, in table 2
foll ows the same tendency.

Table 2 Number of required detedors, N, and number of trials
to generate required number of detedors, Nro when false
negative e@ror, P;, and the thresholdr of r-contiguous matching
function are given. These numbers are cdculated when a self
string length, | =33, an alphabet cardindity, m = 10andthe
number of self strings, Ng =192.

Ps r=3 r=4

N, N, N, N,
0.2 51 21953 535 955
0.1 73 31382 766 1366
0.05 95 40829 997 1777
0.01 146 62765 1532 2733

Even though this formula is clealy useful to predict
the gpropriate number of detedors and its generation
number, its predicted number showed how infeasible this
approach is when it is applied on a more complicated but
more redistic seach space For instance when the
expeded false negative aror rate is fixed as 20%, its
predicted detedor generation trial number is 51 and the
appropriate number of generated detedors is 21935 for
the matching threshold is 3. Similarly, when we define the
matching threshold as 4, it predicted 53 for the former
and 955for the latter. In addition, it was observed that
when we fixed the matching threshold number as four and
ran the system, the system could not manage to generate
any single valid detedor after one day. None of these
cases em to provide any feasible test case in terms of
computing time. This results certainly did not follow the
predicted detector generation trial number.

Thus, for the following experiments, we generated
valid detedors by setting a matching threshold number
that alowed a system to generate avalid detedor in a
reasonable time. It was observed that the average time of
single succesful detedor generation took about 70sec
CPU time and the arerage number of trials to generate a
valid detedor was 2~3 when a matching threshold was
nine. These results were gained after running the negative
seledion agorithm for preliminary experiments. This
number is used as the matching threshold for the
following experiments. The details of these experiment
results are described in the next sedion.

7 EXPERIMENT RESULT

Five different sets of detedors were generated after the
AIS with the negative selection was run five times. Even
though the matching threshold, 9, gave reasonable
computing time to generate avalid detedor, it reguires a
large number of detedors to gain a good non-self



Table 3 The mean and variance values of intrusion and self detedion rates when detedor set sizevaries
The means values are foll owed by the variances in the parentheses.

Num. Of Intrusionl Intrusion 2 Intrusion 3 Intrusion 4 Intrusion 5 Test Self Set

peedors ) ) %) %) ) %)
100 9.45(2.11) 10.11(8.50) 11.14(9.44) 10.62(4.03) 0.48(0.012) 7.89(17.31)
200 11.72(5.37) 11.58(13.71) 12.98(11.52) 12.89(10.43) 0.88(0.092) 9.47(36.70)
300 12.53(4.25) 11.89(13.24) 13.73(9.48) 13.63(9.15) 1(0.12) 10(29.08)
400 13.33(2.79) 12.32(11.30) 14.58(10.18) 14.36(6.87) 1.28(0.112) 1053(31.16)
500 1355(3.15) 12.74(13.63) 14.89(10.40) 14.51(7.35) 1.36(0.068) 11.05(25.62)
600 13.77(3.80) 13.16(11.91) 15.07(10.24) 14.65(8.12) 1.68(0.412) 11.58(29.78)
700 13.77(3.80) 13.16(11.91) 15.26(9.46) 14.65(8.12) 2.04(0.388) 11.58(29.78)
800 13.92(4.09) 13.26(11.27) 15.45(10.09) 14.80(8.22) 2.04(0.388) 11.58(29.78)
900 14.14(4.13) 1347(10.47) 15.67(9.69) 15.02(8.52) 2.08(0.352) 12.63(46.40)
1000 14.21(4.32) 14.08(11.52) 15.90(8.71) 15.09(8.68) 2.28(0.312) 12.63(46.40)

detedion rate. After taking into acount pradicdly
reasonable time to generate awhole data set, up to 10
valid detetors were generated per run. All experiments
were run on a PC with AMD K6-2 40(0Mhz procesor and
128M RAM.

Table4 Timeis an avarage time of single detedor generation
and Trial isan average trial number to generate asingle detedor.
The average values are followed by the standard deviationsin

parentheses.
System Time (Sec) Detector
Run Generation
Trial
1 58.71(26.85) 2.80(2.16)
2 67.29(28.88) 2.21(1.65)
3 73.75(33.72) 2.81(2.22)
4 78.48(39.86) 3.12(2.69)
5 69.64(26.62) 2.72(2.07)
Average 71.81(32.75) 2.63(2.14)

Table 3 shows the average time of single successul
detedor generation and the aserage number of trials to
generate avalid detedor. Compared to the result when the
matching threshold is four, which did not generate any
single detedor after 24 hours, these results certainly look
more gpliceble. We monitored five different non-self
sets and one previously unseen self sets after every 100
detedor generation and the monitor results of five
different runs are shown in table 4. The overal non-self
detedion rate was very poa: lessthan 16%. In particular,
the non-self detedion rate for the last intrusion set, which
was artificially generated by random strings, is extremely
low and its maximum average non-self detedion rate
readies only 2.28%. In addition, its average false positive
detedion rate, which is &If detedion rate by a detedor
set, shows 12.63% and this rate is not hugely different
from the other four average non-self detedion rates

except intrusion 5. This implies that the wlleded self and
non-self sets perhaps have some overlapping patterns
because they showed quite similar detedion rates. Thus
generated detedor sets completely faled to dstinguish
the hidden self and non-self patterns.

These poa results were anticipated. Thisis becaise the
matching threshold was <t in order to oltain a reassonable
detedor generation time. If, for example, we wanted a
more usable 80% non-self detedion rate, 643775165
detectors would be required (this number is also oktained
from equation 3). The largest size of a generated detedor
set, 100Q was much smaller than this number and this
caused such poa results. In addition, each run arealy
took about 20 hours® to generate 1000 ditedors. If we
wished to generate 64375165 detedors, it would require
12517850.4 hours, or about 1,429 yeas on the same
computer. According to Moore's Law, the processng
speed of computers doubles every 18 months. We would
have to wait around 35 yeas before the average
processng speed of computers became fast enough to
generate these detedors in an hour - and this is for just
15~20 minutes of atiny subset of the network traffic data.

8 ANALYSIS

In contrast to the promising results shown in Hofmeyr’s
negative seledion agorithm for network intrusion
detedion (Hofmeyr, 1999 Hofmeyr and Forrest, 2000),
the results of these experiments raise doubt whether this
algorithm should be used for network intrusion detedion.
In order to answer this question, the negative seledion
algorithm for network intrusion detedion is analysed in
detail.

The main problem of the negative seledion agorithm
is a severe scding problem. Unlike previous work using

2 Since it took, on average, 72 seconds to generate each detector, 72000
seconds were needed to produce 1000 detectors. 72000 seconds are 20
hours.



the negative seledion agorithm for anomaly detedion,
here we gply a much larger “self” set to the negative
seledion algorithm. The definition of larger “self” set was
essential to cover diverse types of network intrusions. For
instance, (Hofmeyr 1999; Hofmeyr and Forrest, 2000)
defines “self” as a set of norma pairwise @nredions
between computers. These include connedions between
two computers in the LAN and between one computer in
the LAN and external computers. The connedion between
computers is defined by “data-path-triple”: (the source IP
address the destination |P address the port cdled for this
conredion). This lf definition is chosen based on the
work by (Heberlein, et a, 1990). However, as other IDS
literature pointed ou (Lee, 1999), this sf definition is
very limited in order to deted various types of network
intrusions and it will certainly be impossble to deted
some intrusions that occur within a single normal
conredion such as unauthorised access from a remote
madine.

However, as observed in sedion 4 when the self
definition widens, a binary string to encode a detedor
lengthens. Asthe result of long length of binary detedors,
an appropriate number of detedors to gain an acaptable
false negative eror becomes huge and thus requires an
unacceptably long computation time. Our previous
experiment results clealy show this problem.

It shoud be noted that Hofmeyr (1999) developed a
refined theory and multi ple seaondary representations and
these help to reduce the number of trials to generate
detedors on structured self as much as three orders
magnitude less These methods made the distribution d a
self set clump and it resulted in the reduction d the
number of detedor generation trials. However, the refined
theory and secondary representations add extra spaceand
computing time. More importantly, al of the suggested
semndary representations, such as pure permutation,
imperfed hashing and substring hashing, are matching
rules which chedk matching ory on gnotypes.
Unfortunately, matching rules that operate only at the
genatype level have a weakness to be applied for a
network intrusion detedion problem. This deficiency can
be eplained by urravelling the problem of r-contiguous
matching function.

We used the r-contiguous rule to check the match
between a given detedor and antigen. The main pupose
of using it was in order to employ the formula to
approximate an appropriate number of detedorsto gain a
certain nan-self detedion rate. However, the r-contiguous
matching rule is too ssimple to determine the matching
between rather complicaed and high-dimensiond
patterns. It has been aready known that most rules to
represent intrusion signatures describe correlation among
significant network conredion events and temporal co-
occurrences of events (Lee 1999, Porras, 1998). Sincethe
r-contiguous bit matching only measures the contiguous
bits of genotypes of given two strings, it is hard to
guaranteethat the r-contiguous bit matching can cach this
kind of correlation from given self and non-self patterns.
The wider range of self definition shown in sedion 4is

also suggested in order to extrad this type of correlation
from given self and non-self network traffic examples.

But, if any new matching function is employed,
D’ haeselea’s (1997) formulais no longer valid. Thereis
no way to tune the right number of detedors for negative
seledion. Therefore, this difficulty may forcethe negative
seledion algorithm to adop an arbitrary number of
detedors and this may cause a unexpededly low
detedion acaracy or inefficient computation by
generating more than sufficient number of detedors. In
addition, D’haeselea’s (1997) new detedor generation
algorithms using a linear-time dgorithm and a greedy
agorithm that guarantees a liner time of detedor
generation is aso not applicable when a different
matching functionis used.

In summary, it is necessary to use amore sophisticated
matching function to determine the degree of correlation
among significant network connedion events and
temporal co-occurrences of events. This requires deriving
a new way to tune an appropriate number of detedors,
which can be used for more sophisticaed matching
function.

These drawbacks of the negative seledion algorithm
made the AIS struggle to monitor vast amount of a
network self set despite its other important feaures®.
Consequently, the initial results of our experiments
motivated us to re-define the role of negative seledion
stage within an overall network-based IDS and design a
more gplicable negative seledion algorithm, which
follows a newly defined role. As much of the other
immunology literature (Tizard, 1995) addresses that the
antigen detedion powers of human antibodes rise from
the evolution of antibodes via a ¢onal selection stage.
Whil e the negative seledion agorithm alows the AIS to
be a1 invaluable anomaly detedor, its infeasibility to be
applied on a red network environment is caused from
alocaing a rather overambitious task to it. To be more
predse, the job d a negative selection stage should be
restricted to tadkle amore modest task that is closer to the
role of negative seledion of human immune system. That
is smply filtering the harmful antibodes rather than
generating competent ones. This view has been
corroborated by further work (Kim and Bentley, 200])
which has recently shown how succesful the use of clona
seledion with a negative seledion operator can be for this
type of problem.

¥ Hofmeyr and Forrest (2000)’s final system employs sme other
extensions to support the operation o AIS under a red network
environment. Among them, affinity maturation and memory cel
generation follow the donal seledion concept and these provide
a kind d evolution of a detedor set distributed on monitored
hosts. However, it ill uses only the negative seledion
algorithm to generate an initial detedor set. Even though it may
conform to human immune systems more dosely, this approach
could require excessve mmputation time to generate the initial
detedor set, if a broader definition of self is used. In addition,
the usefulness of initial detedors is not proven before they are
distributed to ather hosts. This may also cause awaste of other
computing resources.



9 CONCLUSIONS

This paper has investigated the role of negative selection
in an artificial immune system (AIS) for network
intrusion detedion. The negative selection stage within
our AlS was implemented foll owing the dgorithm creaed
by Forrest et al (1994 1997) and applied to red network
data The experiments showed the infeesibility of this
algorithm for this applicaion: the @mputation time
needed to generate a sufficient number of detedors is
completely impradicd.

This result direds this reseach to re-define the role of
negative seledion algorithm within our overall artificia
immune system framework. Current work is now
investigating the intrusion detedion mechanism of the
clonal seledion stage. A new understanding of the task of
the dona seledion stage has now resulted in the
development of a more gpropriate use for negative
seledion as an operator within a novel clonal seledion
agorithm (Kim and Bentley, 2001).
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