
A Self-Tuning, Self-Protecting, Self-Healing Session State Management Layer

Benjamin C. Ling and Armando Fox
Stanford University

{bling, fox}@cs.stanford.edu

Abstract

Management of semi-persistent state, such as user-

session state, is one factor that complicates failure

management in clustered three-tier Internet

applications [5]. We observe that the specific
properties of user-session state can be exploited to

design a lightweight state storage layer that offers

many of the same ease-of-management and ease-of-
recovery properties as stateless components such as

Web servers. We describe SSM, a self-tuning, self-

protecting, and self-healing session state management
layer that provides a storage and retrieval mechanism

for semi-persistent, serial-access user session state.
SSM is fast, scalable, fault-tolerant, and recovers

instantly from individual node failures. Any SSM node

may be rebooted at any time and there is no special
recovery code, so the performance cost of “eager”

recovery is near zero, simplifying recovery policy

management when SSM is integrated into a larger

system.

1. Introduction

 The concept of a user session is present in nearly
all client-facing applications, including web-based
applications. A user interacts with the application for a
period of time, called a session, until she signs out or
her session expires after a fixed time interval. During
this time, the user’s interaction with the application
may produce temporary data relevant to the user’s
session, e.g. which step the user has completed in the
application workflow. Upon completion of the session,
this data is no longer needed.
 Such web-based applications are typically
complex, constructed in a multi-tier arrangement [5] for
separation of concerns and scalability. A major
challenge of such application installations is keeping
them highly available—even well-run services achieve
only two to three nines (99% to 99.9%) availability
[23]. Redundancy and fast failover have traditionally
been used to mask failures (and thereby speed
recovery) for stateless application components such as

Web server front-ends. We ask whether the specific
properties of session state can be exploited to construct
a stateful component (the session state store) that
presents the same availability and ease-of-management
opportunities as stateless building blocks.
 In particular, we present a self-tuning, self-
protecting, and self-healing session state management
layer that provides a storage and retrieval mechanism
for semi-persistent serial-access user session state.
SSM is fast, scalable, fault-tolerant, and optimized for
recovery speed and ease of recovery management. By
recovery speed, we mean that fast failover recovers
from individual SSM node failures, and no data is lost
and all data can continue to be read and written during
the recovery interval. By ease of recovery
management, we mean that deciding the correct
recovery policy for a larger system that includes SSM is
easy: SSM nodes can be recovered simply by restarting
them at any time, and since the performance cost of
recovery is near zero, there is no penalty for
accidentally “over-recovering”. This property makes it
easier to use techniques such as fault model
enforcement [24] that may use overly-conservative
recovery strategies to assure recovery will succeed. By
self-tuning, we mean that SSM discovers its own
maximum load capacity, without requiring a system
administrator to specifically state the load capacity of
each component or to conduct staging experiments to
discover its aggregate capacity. By self-protecting, we
mean that SSM uses admission control to protect itself
from collapsing from overload. Finally, by self-
healing, we mean that SSM is able to continue
functioning correctly in the presence of non-properly
functioning modules, either in degraded performance,
incorrect results, livelocks, or crashes. SSM should be
able to 1) detect when any of the above conditions
occur, and 2) take appropriate actions, either by
restarting the faulty module, shutting it down
permanently, or simply continue functioning with the
faulty module. SSM recovers instantly from individual
node failures; data is replicated, and no component in
SSM stores hard state or requires hard state to operate,
and therefore, recovery is simple and usually requires at
most a restart of the process. Furthermore, by

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

increasing the number of redundant copies of data that
is stored, SSM is able to proactively reboot components
to recover from performance failures at individual
nodes.

In Section 2 we discuss the particular class of
session state that SSM addresses, the qualities of the
state, and how we can exploit its distinct properties to
build a simple yet efficient state store. In Section 3, we
discuss existing solutions and why they are inadequate.
In Section 4, we discuss the design and implementation
of SSM. In Section 5, we evaluate the system and its
implementation. In Section 6, we discuss future work.
In Section 7, we present related work, and then
conclude.

2. Exploiting Specific Properties of Session

State

We describe a large subcategory of session state by
describing how it is used, its properties, the
requirements it imposes on its storage, as well as the
functionality required to support it. Various different
categories of session state exist. However, in the
remainder of this paper, we will use the term “session
state” to refer to the subcategory of session state which
we describe below.
 We use the example of a user working on a web-
based enterprise-scale customer support application to
illustrate how session state is often used. The user is
simultaneously handling multiple customer email
requests, and possibly taking a phone call.
 A large class of applications, including J2EE-based
and web applications in general, use the interaction
model below:

• User submits a request (to add notes to a case),
request is routed to a stateless application
server. This server is often referred to as the
middle-tier.

• Application server retrieves the full session
state for user (which includes the current
application state).

• Application server runs application logic (to
add the notes to the case)

• Application server writes out entire session
state

• Results are returned to the user’s browser

 Session state must be present on each interaction,
since user context or workflow is stored in session
state. If it is not, the user’s workflow and context is
lost, which is seen as an application failure to the end
user, and is usually unacceptable from a product
requirement standpoint. Session state retrieval is in the
critical path of the control path – processing cannot

continue unless session state has been retrieved.
Typically, session state is on the order of 3K-200K [2].
 Some important properties/qualities of the session
state we focus on are listed below. Session state:

1. Is accessed in a serial fashion (no

concurrent access). Each user reads her own
state. Unlike state in its full generality, session
state is accessed in a fixed pattern of
alternating reads and writes: Read 1 of session
state for user U is followed by Write 1, which
is followed by Read 2, followed by Write 2.

2. Is semi-persistent. Session state must be
present for a fixed interval T, but can be
deleted after T has elapsed. T is application
specific, and usually on the order of minutes to
hours.

3. Is keyed to a particular user. An advanced
query mechanism to do arbitrary searches is
not needed.

4. Is updated on every interaction. Session
state such as user context in a web-based
application is updated in its entirety on every
interaction, as described earlier. A new copy
of the state is written on every interaction.

5. Does not need ACID [7] semantics. Session
state is transient, and state that requires
transactions is not included in the class of
session state we address.

Given these properties, the functionality necessary
for a session state store can be greatly simplified (each
point corresponds to an entry in the previous numbered
list):

1. No synchronization is needed. Since the
access pattern corresponds to an access of a
single user making serial requests, no
conflicting accesses exist, and hence race
conditions on state access are avoided, which
implies that locking is not needed.

2. State stored by the repository need only be

semi-persistent – a temporal, lease-like [3]
guarantee is sufficient, rather than the
“durable” guarantee that is made in ACID [7].

3. Single-key lookup API is sufficient. Since
state is keyed to a particular user and is only
accessed by that user, a general query
mechanism is not needed.

4. Previous values of state keyed to a

particular user may be discarded.

5. Only atomic update is necessary; partial
writes of a user’s state would result in internal
inconsistency and incorrect behavior. Each
write writes out all of the user’s session state;
consistency is trivial and isolation is
guaranteed. Durability is not needed.

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

3. Inadequacy of existing solutions

 Currently, session state storage is done with one of
the following mechanisms: Relational database (DB),
file system (FS), single-copy in-memory, replicated in-
memory.

Frequently, enterprises use either the DB or FS to
store session state because they already use a DB or FS
for persistent state. This potentially simplifies
management, since only one type of administrator is
needed. However, there are several drawbacks to
using either a DB or FS to handle session state, besides
the costs of additional licenses and complexity of
administration:
 D1 Contention. Unless a separate DB/FS is

created for session state, requests for session
state and requests for persistent objects
contend for the same resources. Session state
read/write requests are frequent, which can
interfere with requests for persistent objects
that are housed by the same physical resource.

 D2 Failure and recovery is expensive. If a crash
occurs, recovery of the DB or FS may be slow,
often on the order of minutes or even hours.
Recovery time for a DB can be reduced if
checkpointing is done frequently; however,
checkpointing reduces performance under
normal operation. There exist DB/FS solutions
that have fast recovery, but these tend to be
quite costly [9]. Even if recovery is on the
order of seconds, in a large scale application,
hundreds or thousands of users may see a
failure if they attempt to contact the server at
the time of recovery.

 D3 Session cleanup is an afterthought. After
state is put into a DB or FS, some process has
to come back and look at the data and expire
it, or else the data continues growing without
bound. Reclaiming expired sessions degrades
performance of other requests to the DB or FS.

 D4 Potential performance problems.
Reading/writing state objects to a DB/FS may
sometimes incur a disk access in addition to a
network roundtrip.

 On the other hand, in-memory solutions (IMS)
avoid several of the drawbacks of FS and DB, and are
generally faster than FS/DB oriented solutions.
Existing in-memory solutions require a user to be
pinned to a particular server. The application-
processing tier is no longer stateless; session state is
being stored by the application server; it must serve the
dual roles of application processing as well as
providing state storage. Because of pinning, load-

balancing can only be done at the user level and not at
the request level.
 If only a single copy of a user’s session state is
stored on a corresponding application server, on a
server crash, state for some users is lost. The crash will
be manifested to users as an app failure, which is
usually unacceptable.
 A primary-secondary scheme is often used for a
replicated solution, such as the one adopted by BEA
WebLogic™ [5], a J2EE application server. Further
details can be found in [5]. Updates are synchronously
propagated to both primary and secondary servers.

There are several potential problems (Note that
some of the deficiencies of DB/FS solutions are shared
by WebLogic™, as mentioned below):
 D5 Performance is degraded on secondaries.

D5 is related to D1. Instead of only providing
application processing, secondary application
servers face contention from session state
updates that are propagated from the
primaries. This is in comparison to the
database and file system solution, where a
single application server handles a particular
user request. In the primary/secondary
solution, secondaries must devote resources to
being backups in addition to serving requests.

 D6 Recovery is more difficult (special case code

for failure and recovery). The middle-tier is
now stateful, which makes recovery more
difficult. Special-case failure recovery code is
necessary, e.g. secondaries must detect the
failure of a primary and become the primary
and elect a new secondary.

 D7 Poor failure and recovery performance. If a
server A chooses another server B to be its
secondary for all requests, assuming equal
load across all servers, upon failure of a
primary A, the secondary B will have to serve
double load – B must act as primary for all of
A’s requests as well as its own. Similar logic
applies to B’s secondary, which experiences
twice the secondary load.

 D8 Lack of separation of concerns. The
application server now provides state storage,
in addition to application logic processing.
These two are very different functions, and a
system administrator should be able to scale
each separately.

 D9 Performance coupling. If a secondary is
overloaded, then users contacting a primary
for that secondary will experience poor
performance behavior as well. Because of the
synchronous nature of updates from primary to
secondary, if the secondary is overloaded, e.g.
from faulty hardware or user load, the primary

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

will have to wait for the secondary before
returning to the user, even if the primary is
under-loaded [4].

 Note that any replication scheme requiring
synchronous updates will necessarily exhibit
performance coupling. Whenever a secondary is slow
for any reason, any primary served by that secondary
will block.
 If secondaries are chosen on a per-user level (i.e.
users sharing the same primary may have different
secondaries), after a failure of a single server, the entire
cluster will be coupled, assuming that the load balancer
load balances correctly. This is particularly worrisome
for large clusters, where node failures are more likely
because of the number of nodes. An industry expert
has confirmed that this is indeed a drawback for
existing solutions [6]. Furthermore, application servers
often use shared resources such as thread pools, and
slowness in the secondary will hold resources in the
primary for longer than necessary.

4. Design and Implementation

In this section, we describe the design and
implementation of SSM, discussing the salient features
of SSM.

We assume a physically secure cluster, along with
a commercially-available high throughput, low latency
redundant system area network (SAN) that can achieve
high throughput with extremely low latency. An
uninterruptible power supply reduces the probability of
a system-wide simultaneous hardware outage.

We have implemented a working system using
Java, running on the UC Berkeley Millennium Cluster
[16]. The cluster is composed of 42 IBM xSeries 330
1U rackmounted PCs, each running Linux 2.4.18 on
Dual 1.0 GHz Intel Pentium III CPUs and 1.5GB ECC
PC133 SDRAM, connected via Gigabit Ethernet.

Figure 1. Architecture

Overview

SSM has two components: bricks and stubs.
Bricks are the storage mechanism; stubs dispatch
requests to appropriate bricks. On a client request, the
application server will first ask the stub to read the
client’s session state, and after application processing,
to write out the new session state. The general strategy
employed by the stub for both reads and writes is “send
to many bricks, wait for few to reply.”

A brick stores session state objects by using an in-
memory hash table. Conceptually, a brick is simply a
processor, a network interface, and memory. Each
brick sends out periodic beacons to indicate that it is
alive.

The stub is used by applications to read and write
session state. The stub interfaces with the bricks to
store and retrieve session state. Each stub also keeps
track of which bricks are currently alive.
 The write interface exported by the stub to the

application is Write(HashKey H, Object v,
Expiry E) and returns a cookie as the result of a

successful write, or throws an exception if the write
fails. The returned cookie should be stored on the

client. The read interface is Read(Cookie C)and

returns the last written value for hash key H, or throws
an exception if the read fails. If a read/write returns to
the application, then it means the operation was
successful. On a read, we guarantee that the returned
value is the most recently written value (recall that the
type of session state we are dealing with is accessed
serially by a single user).
 The stub propagates write and read requests to the
bricks. Before we describe the algorithm describing the
stub-to-brick interface, let us define a few variables.
 Call W the write group size. A stub attempts to
write to W of the bricks, and read from R bricks. Define
WQ as the write quota, which is the minimum number
of bricks that must return “success” to the stub before
the stub returns to the caller. We use the term quota to
avoid confusion with the term quorum; quorums are
discussed in section on related work. WQ – 1 is the
number of simultaneous brick failures that the system
can tolerate before losing data. Note that 1 � WQ � W,

1 � R, and R � W. Lastly, call t the timeout interval, an
amount of time that the stub waits for a brick to reply to
an individual request. Note that t is different from the
session expiration, which is the lifetime of a session
state object.

Basic Read/Write Algorithm:

The basic write algorithm can be described as “write to
many, wait for a few to reply.” Conceptually, the stub

AppServer
S
T
U
B

SAN

Brick1

Brick2

BrickN

AppServer
S
T
U
B

Middle-Tier (App Logic) Middle-Tier Storage (RAM)

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

writes to more bricks than are necessary, and only waits
for WQ bricks to reply. Sending to more bricks than
are necessary allows us to harness redundancy to avoid
performance coupling; a degraded brick will not slow
down a request. The algorithm is described below:

1. Calculate checksum for object and expiration
time.

2. Create a list of bricks L, initially the empty set.
3. Choose W random bricks, and issue the write

of {object, checksum, expiry} to each brick.
4. Wait for WQ of the bricks to return with

success messages, or until t elapsed. As each
brick replies, add its identifier to the set L.

5. If t has elapsed and the size of L is less than
WQ, throw an exception indicating that the
system is temporarily overloaded. Otherwise,
continue.

6. Create a cookie consisting of H, the identifiers
of the WQ bricks that acknowledged the write,
and the expiry, and calculate a checksum for
the cookie.

7. Return the cookie to the caller.

The stub handles a read by sending the read to R bricks,
waiting for only 1 brick to reply:

1. Verify the checksum on the cookie.
2. Issue the read to R random bricks chosen from

the list of WQ bricks contained in the cookie.
3. Wait for 1 of the bricks to return, or until t

elapses.
4. If the timeout has elapsed and no response has

been returned, throw an exception indicating
that the system is temporarily overloaded.
Otherwise, continue.

5. Verify checksum and expiration. If checksum
is invalid, repeat step 2. Otherwise continue.

6. Return the object to the caller.

For garbage collection of bricks, we use a method
seen in generational garbage collectors [10]. Earlier we
described each brick as having one hash table, for
simplicity. In reality, it has a set of hash tables; each
hash table has an expiration. A brick handles writes by
putting state into the table with the closest expiration
time after the state’s expiration time. For a read, the
stub also sends the key’s expiration time, so the brick
knows which table to look in. When a table’s
expiration has elapsed, it is discarded, and a new one is
added in its place with a new expiration.

Load capacity discovery and admission control:

 In addition to the basic read/write algorithm, each
stub maintains a sending window (SW) for each brick,
which the stub uses to determine the maximum number

of in-flight, non-acked requests the stub can send to the
recipient brick. The stub implements a TCP-like
algorithm for maintaining the window; when a request
is successfully acked, the window size is additively
increased, and when a request times out, the window
size is multiplicatively decreased. The stub assumes
that whenever a request to a brick times out, it is
because the brick is unable to process the request in a
timely manner, and therefore reduces its sending to the
brick accordingly. In the case when the number of in-
flight messages to a brick is equal to the SW, any
subsequent requests to that brick will be rejected until
the number of in-flight messages is less than the SW. If
a stub cannot find a suitable number of bricks to send
the request to, it throws an exception to the caller
indicating that the system is overloaded. Each stub
stores only temporary state for the requests that are
awaiting responses from bricks. The stub performs no
queueing for incoming requests from clients. For any
request that cannot be serviced because of overload, the
stub rejects the request immediately, throwing an
exception to the caller indicating that the system is
temporarily overloaded.
 Each brick also performs admission control; when
a request arrives at the brick, it is put in a queue. If the
timeout has elapsed by the time that the brick has
dequeued the request, the request is disregarded and the
brick continues to the service the next queued request.
 Note that the windowing mechanism at the stub
and the request rejection at the brick protect the system
in two different ways. At the stub, the windowing
mechanism prevents any given stub from saturating the
bricks with requests. However, even with the
windowing mechanism, it is still possible for multiple
stubs to temporarily overwhelm a brick (e.g. the brick
begins garbage collection and can no longer handle the
previous load). At the brick, the request rejection
mechanism allows the brick to throw away requests that
have already timed out in order to “catch up” to the
requests that can still be serviced in a timely manner.

Recovery

 If a node cannot communicate with another, we
assume it is because the other node has stopped
executing.
 On failure of a client, the user perceives the session
as lost, i.e. if the browser crashes, a user does not
expect to be able to resume her interaction with a web
application.
 On failure of an application server, a simple restart
of the server is sufficient since it is stateless. The stub
on the server detects existing bricks from the beacons
and can reconstruct the table of bricks that are alive.
The stub can immediately begin handling both read and

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

write requests; to service a read request, the necessary
metadata is provided by the client in the cookie, and to
service a write request, all that is required is a list of
WQ live bricks.
 On failure of a brick, a simple restart of the brick is
necessary. All state on that brick is lost; however, the
state is replicated on (WQ – 1) other bricks, and so no
data is lost. Furthermore, because session state is
frequently accessed by the end user with the read/write
pattern discussed earlier, on a subsequent user request,
a write will create WQ new copies\, and the system can
once again tolerate (WQ – 1) faults without losing data.
 An elegant side effect of having simple recovery is
that clients, servers, and bricks can be added to a
production system to increase capacity. For example,
adding an extra brick to an already existing system is
easy. Initially, the new brick will not service any read
requests since it will not be in the read group for any
requests. However, it will be included in new write
groups because when the stub detects that a brick is
alive, the brick is a candidate for a write. Over time, the
new brick will receive an equal load of read/write
traffic as the existing bricks.

Recovery Philosophy

 Previous work has argued that rebooting is an
appealing recovery strategy in cases where it can be
made to work [19]: it is simple to understand and use,
reclaims leaked resources, cleans up corrupted transient
operating state, and returns the system to a known state.
Even assuming a component is reboot-safe, in some
cases multiple components may have to be rebooted to
allow the system as a whole to continue operating;
because inter-component interactions are not always
fully known, deciding which components to reboot may
be difficult. In fact, [19] argues that a principal
challenge is to quantify the cost of making a mistake.
If the decision of which components to reboot is too
conservative (too many components rebooted),
recovery may take longer than really needed. If it is too
lenient, the system as a whole may not recover, leading
to the need for another recovery attempt, again resulting
in wasted time.
 By making recovery “free” in SSM, we largely
eliminate the cost of being too conservative. If an SSM
brick is suspected of being faulty—perhaps it is
displaying fail-stutter behavior [20] or other
characteristics associated with software aging [21]—
there is essentially no penalty to reboot it
prophylactically. This can be thought of as a special
case of fault model enforcement: treat any performance
fault in an SSM brick as a crash fault, and recover
accordingly. In recent terminology, this makes SSM a
crash-only subsystem [22].

 SSM is being integrated into a larger Web
application server called JAGR, many of whose
components are designed to have the crash-only
property. We anticipate that the ease and speed of
recovery of SSM as a subsystem will make it easier to
develop system-wide recovery policies for JAGR.

5. Evaluation and Results

 We present several micro-benchmarks that suggest
that SSM satisfies the previously set forth design
requirements. Our load generator is composed of
multiple machines. The keyspace is partitioned and a
partition is given to each of the load generating
machines. Each sending machine then partitions the
keyspace further and hands off the partition to a
sending thread. Each thread makes a pair of write and
read requests for session state through the stub. This
models the worst-case behavior where a user writes and
reads his state exactly once; this causes the hash tables
to continually increase in size. We also conducted
benchmarks where a small set of users read and wrote
their own state repeatedly; the findings were similar
and are not presented here.
 In this paper, we assume a fail-stop model, and
simulate such failures by killing a process manually.
We leave the more general case to future work. We
vary the number of users and bricks; results are
presented in Figures 2, 3 and 4. In all experiments, W
is set to 3, WQ to 2, R to 1, and t to 60 ms. The size of
the state is 8K.

Throughput Discovery
With and w/out Windowing and Admission Control

3 bricks

0

1000

2000

3000

4000

5000

1 3 5 7 9 11 13
time in seconds

#
 r

e
q

 /
s

e
c

120 senders,

AC&Win disabled

150 senders,

AC&Win disabled

220 senders,

AC&Win disabled

250 senders,

AC&Win enabled

Figure 2. Load capacity discovery

• Self-tuning: the implemented windowing
mechanism allows for usage of bricks at full
capacity. Figure 2 shows that SSM discovers
the throughput capacity of the system. The y-
axis labels the number of requests successfully
serviced, while the x-axis measures time.
Figure 2 shows the throughput for 3 bricks for
120, 150, and 220 sending threads, without
any admission control at the stubs or at the

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

bricks. Note that the maximum throughput
capacity of the 3 bricks is around 4000
requests per second. As the number of users
increases to 220, the system has reached the
point of saturation and can no longer serve any
requests successfully because the incoming
requests are being enqueued at a faster rate
than they can be serviced. However, as shown
in Figure 2, SSM with windowing and request
rejection discovers the maximum throughput
capacity of the system, even with 250 sender
threads.

• Self-protecting from overload: Using the
windowing mechanism, a stub knows when
particular bricks are overloaded, and knows
when to respond to the caller that the system is
overloaded and to try back later. Figure 2
shows that without admission control, system
collapse occurs with 220 senders; even with
250 senders, SSM with windowing and request
rejection allows for maximum system
throughput without collapse.

• Self-healing:
o SSM can tolerate WQ-1 faults without

data loss. Furthermore, assuming faults
are independent, since the data is
replicated in WQ bricks, if a brick
crashes, recovery is unnecessary. Data is
“rejuvenated” to WQ bricks on the
subsequent write request.

o It is possible to kill at most WQ-1 bricks
and restart them without data loss.
Furthermore, the system can tolerate W-
WQ performance faults without degrading
response time.

o Figure 3 shows that killing a brick reduces
the number of requests serviced per
second (since the load generated is higher
than what 3 bricks can sustain), and that
SSM recovers to the appropriate load
capacity. Figure 4 shows that when a
brick is restarted after a failure, total
system capacity is restored. Although
SSM has not explored an appropriate
policy for killing and restarting bricks, the
potential of stopping and restarting bricks
so to heal the system is clearly
demonstrated by our initial experiments.

 If we assume a user “think time” or inter-request
interval of 20 seconds, SSM, with 4 bricks, is able to
handle approximately 100,000 users with the system
parameters described earlier.

Total Stub Throughput, Induced Failure
220 total senders using 22 stubs

4 initial bricks, 1 brick killed at t12

killed brick

0

1000

2000

3000

4000

5000

6000

1 3 5 7 9 11 13 15 17 19 21 23
time in seconds

#
re

q
 /

 s
e

c

Figure 3. System reaction to brick failure

Total Stub Throughput,

Fault Inducement and Recovery
210 senders using 35 stubs

4 initial bricks, 1 brick killed at t9 , recovered at t19

Fault induced @

t9

Brick Restarted

@ t19

0

1000

2000

3000

4000

5000

6000

7000

1 3 5 7 9 11 13 15 17 19 21 23
time in seconds

#
 r

e
q

/s
e

c

Figure 4. Failure and recovery of brick

6. Future Work

 Our preliminary work has shown that SSM reacts
well to spikes in workload, and allows requests to flow
through the system at maximum capacity without
causing system collapse. We hope to demonstrate this
with detailed measurements using actual traces from
applications. Garbage collection also remains to be
implemented.
 In this paper, we have assumed a fail-stop model.
In the full version of the paper, we hope to explore the
effect of faulty bricks (e.g. unusually slow response
time, livelock) on the windowing system. We intend
on integrating Pinpoint, which monitors systems for
anomalous behavior, to detect failing or stuttering
bricks.

7. Related Work

In related work, a similar mechanism is used in
quorum-based systems [11, 12]. In quorum systems,
writes must be propagated to W of the nodes in a

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

replica group, and reads must be successful on R of the
nodes, where R + W > N, the total number of nodes in a
replica group. A faulty node will often cause reads to be
slow, writes to be slow, or possibly both. Our solution
obviates the need for such a system, since the cookie
contains the references to up-to-date copies of the data;
quorum systems are used to compare versions of the
data to determine which copy is the current copy.
 From distributed database research, Directory-
Oriented Available Copies [15] utilizes a directory that
must be consulted to determine what replicas store
valid copies of an object. This involves a separate
roundtrip, and the directory becomes a bottleneck. In
our work, we distribute the directory by sending the
directory entries to the browser, leveraging the fact that
for a given key, there is a single reader/writer.
 DDS [4] is very similar to SSM. However, one
observed effect in DDS is performance coupling – a
given key has a fixed replica group, and all nodes in the
replica group must synchronously commit before a
write completes. DDS also guarantees persistence,
which is unnecessary for session state. Furthermore,
DDS exhibits poor behavior in recovery. Even when
DDS is lightly loaded, if a node in a replica group fails
and then recovers, all data in the replica group is locked
while it is copied to the recovered node, disabling write
access to any data residing on the replica group.
Furthermore, DDS exhibits negative cache warming
effects; when a DDS brick is recovered, performance of
the cluster first drops (because of cache warming)
before it increases. This effect is not present in our
work, since recovered/new bricks do not serve any read
requests. The failure and recovery of bricks does lock
any data and cause any data to be unavailable.
 We share many of the same motivations as
Berkeley DB [14], which stressed the importance of
fast-restart and treating failure as a normal operating
condition, and recognized that the full generality of
databases is sometimes unneeded.
 The windowing mechanism used by the stubs is
motivated by the TCP algorithm for congestion control
[17]. The need to include explicit support for
admission control and overload management at service
design time was demonstrated in SEDA [18]; we appeal
to this argument in our use of windowing to discover
the system’s steady-state capacity and our use of
“backpressure” to do admission control to prevent
driving the system over the saturation cliff.

8. Conclusions

Several properties of session state enable us to
greatly simplify the design of SSM. We rely on the fact
that the cookie names which bricks store the state, and

therefore never need to query a majority of the bricks
on requests, as in quorum-based systems. Because
session-state is frequently updated, SSM does not need
to proactively maintain WQ copies of the data after a
brick crash, since on the next update the data will be
rejuvenated, and WQ new copies of the data will be
written. Furthermore, recovery is simple because a new
brick begins servicing new writes, and does not to copy
over data from other bricks. Because session state is
keyed to a particular user, SSM does not need a full
query mechanism, and the standard Java hashtable is
sufficient.
 We believe SSM properly leverages the properties
of session state, providing a self-protecting, self-tuning,
self-healing, instantly-recovering session state
management layer.

References
 [1] Sun Microsystems. J2EE. http://java.sun.com/j2ee/.
[2] U. Singh. Personal communication. E.piphany, 2002.
[3] C.G. Gray and D. R. Cheriton. Leases: An efficient fault-
tolerant mechanism for distributed file cache consistency. In
Proceedings of the 12th ACM Symposium on Operating

Systems Principles, pages 2002-210, Litchfield Park, AZ,
1989.
[4] S. Gribble, E. Brewer, J. M. Hellerstein, and D. Culler.
Scalable, distributed data structures for iIternet service
construction. In Proceedings of the 4th USENIX Symposium

on Operating Systems Design and Implementation, San
Diego, CA, Oct. 2000.
[5] D. Jacobs. Distributed Computing with BEA WebLogic
server. In Proceedings of the Conference on Innovative Data

Systems Research, Asilomar, CA, Jan. 2003.
[6] D. Jacobs. Personal communication, BEA Systems,
December 2002.
[7] J. Gray. The Transaction Concept, Virtues and
Limitations. In Proceedings of VLDB, Cannes, France, Sept
1981.
 [9] Network Appliance. http://www.networkappliance.com.
[10] William D. Clinger and Lars T. Hansen. Generational
garbage collection and the radioactive decay model.
SIGPLAN Notices, 32(5):97—108. Proceedings of the ACM

SIGPLAN '97 Conference on Programming Language Design

and Implementation, May 1997.
[11] Robert H. Thomas: A Majority Consensus Approach to
Concurrency Control for Multiple Copy Databases. TODS
4(2): 180-209(1979)
[12] D. Gifford: Weighted Voting for Replicated Data.
Proceedings 7th Symposium on Operating Systems
Principles: 150-162, 1979.
[14] M. Seltzer and M. Olson. Challenges in embedded
database system administration. In Proceeding of the
Embedded System Workshop, 1999. Cambridge, MA
 [15] Concurrency Control and Recovery in Database
Systems, by P.A. Bernstein, V. Hadzilacos and N. Goodman.
 [16] Millennium Cluster.
http://www.millennium.berkeley.edu

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

[17] V. Jacobson. Congestion Avoidance and Control. In
Proceedings of SIGCOMM 1988 (Stanford, CA, Aug. 1988),
ACM.
[18] Matt Welsh and David Culler. Overload Management as
a Fundamental Service Design Primitive. In Proceedings of

Eighth Workshop on Hot Topics in Operating Systems

(HotOS-VIII), Elmau, Germany, May 2001.
[19] G. Candea, J. Cutler, A. Fox, R. Doshi, P. Garg, R.
Gowda. Reducing Recovery Time in a Small Recursively
Restartable System. In Proceedings of the International

Conference on Dependable Systems and Networks (DSN-
2002), Washington, D.C., June 2002
[20] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau, Fail-Stutter Fault Tolerance. In Proceedings of
Eighth Workshop on Hot Topics in Operating Systems
(HotOS-VIII), Elmau, Germany, May 2001.
[21] Sachin Garg and Aard Van Moorsel and K.
Vaidyanathan and Kishor S. Trivedi, A Methodology for
Detection and Estimation of Software Aging. In Proceedings

of the 9th International Symposium on Software Reliability

Engineering (ISSRE 98), Paderborn, Germany, 1998.
[22] G. Candea and A. Fox. Crash-Only Software. In
Proceedings of the Ninth Workshop on Hot Topics in

Operating Systems (HotOS-IX), Lihue, HI, May 2003 (to
appear).
[23] David Oppenheimer and David A. Patterson. Why do
Internet Services Fail, and What Can Be Done About It? In
Proceedings of 4th USENIX Symposium on Internet
Technologies and Systems (USITS '03), Seatttle, WA, March
2003.
[24] Kiran Nagaraja, Ricardo Bianchini, Richard P. Martin
and Thu D. Nguyen. Using Fault Model Enforcement to
Improve Availability. In Proceedings of the 2nd Workshop
on Evaluating and Architecting System Dependability (EASY
2002), San Jose, CA, October 2002.
[22] M. Chen, E. Kiciman, Using Runtime Path for Macro

Analysis. In Proceedings of the Ninth Workshop on Hot

Topics in Operating Systems (HotOS-IX), Lihue, HI, May
2003 (to appear).

PROCEEDINGS OF THE AUTONOMIC COMPUTING WORKSHOP FIFTH ANNUAL INTERNATIONAL WORKSHOP
ON ACTIVE MIDDLEWARE SERVICES (AMS’03) ISBN 0-7695-1983-0/01 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

