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Abstract

Management of semi-persistent state, such as user- 

session state, is one factor that complicates failure 

management in clustered three-tier Internet 

applications [5].  We observe that the specific 
properties of user-session state can be exploited to 

design a lightweight state storage layer that offers 

many of the same ease-of-management and ease-of-
recovery properties as stateless components such as 

Web servers.  We describe SSM, a self-tuning, self-

protecting, and self-healing  session state management 
layer that provides a storage and retrieval mechanism 

for semi-persistent, serial-access user session state. 
SSM is fast, scalable, fault-tolerant, and recovers 

instantly from individual node failures.  Any SSM node 

may be rebooted at any time and there is no special 
recovery code, so the performance cost of “eager” 

recovery is near zero, simplifying recovery policy 

management when SSM is integrated into a larger 

system.

1. Introduction 

 The concept of a user session is present in nearly 
all client-facing applications, including web-based 
applications.  A user interacts with the application for a 
period of time, called a session, until she signs out or 
her session expires after a fixed time interval.  During 
this time, the user’s interaction with the application 
may produce temporary data relevant to the user’s 
session, e.g. which step the user has completed in the 
application workflow.  Upon completion of the session, 
this data is no longer needed. 
 Such web-based applications are typically 
complex, constructed in a multi-tier arrangement [5] for 
separation of concerns and scalability.  A major 
challenge of such application installations is keeping 
them highly available—even well-run services achieve 
only two to three nines (99% to 99.9%) availability 
[23].  Redundancy and fast failover have traditionally 
been used to mask failures (and thereby speed 
recovery) for stateless application components such as 

Web server front-ends.   We ask whether the specific 
properties of session state can be exploited to construct 
a stateful component (the session state store) that 
presents the same availability and ease-of-management 
opportunities as stateless building blocks. 
      In particular, we present a self-tuning, self-
protecting, and self-healing session state management 
layer that provides a storage and retrieval mechanism 
for semi-persistent serial-access user session state.  
SSM is fast, scalable, fault-tolerant, and optimized for 
recovery speed and ease of recovery management.  By 
recovery speed, we mean that fast failover recovers 
from individual SSM node failures, and no data is lost 
and all data can continue to be read and written during 
the recovery interval.  By ease of recovery 
management, we mean that deciding the correct 
recovery policy for a larger system that includes SSM is 
easy: SSM nodes can be recovered simply by restarting 
them at any time, and since the performance cost of 
recovery is near zero, there is no penalty for 
accidentally “over-recovering”.  This property makes it 
easier to use techniques such as fault model 
enforcement [24] that may use overly-conservative 
recovery strategies to assure recovery will succeed.  By 
self-tuning, we mean that SSM discovers its own 
maximum load capacity, without requiring a system 
administrator to specifically state the load capacity of 
each component or to conduct staging experiments to 
discover its aggregate capacity.  By self-protecting, we 
mean that SSM uses admission control to protect itself 
from collapsing from overload.  Finally, by self-
healing, we mean that SSM is able to continue 
functioning correctly in the presence of non-properly 
functioning modules, either in degraded performance, 
incorrect results, livelocks, or crashes. SSM should be 
able to 1) detect when any of the above conditions 
occur, and 2) take appropriate actions, either by 
restarting the faulty module, shutting it down 
permanently, or simply continue functioning with the 
faulty module.  SSM recovers instantly from individual 
node failures; data is replicated, and no component in 
SSM stores hard state or requires hard state to operate, 
and therefore, recovery is simple and usually requires at 
most a restart of the process.  Furthermore, by 
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increasing the number of redundant copies of data that 
is stored, SSM is able to proactively reboot components 
to recover from performance failures at individual 
nodes.

In Section 2 we discuss the particular class of 
session state that SSM addresses, the qualities of the 
state, and how we can exploit its distinct properties to 
build a simple yet efficient state store.  In Section 3, we 
discuss existing solutions and why they are inadequate.  
In Section 4, we discuss the design and implementation 
of SSM.  In Section 5, we evaluate the system and its 
implementation.  In Section 6, we discuss future work.  
In Section 7, we present related work, and then 
conclude. 

2. Exploiting Specific Properties of Session 

State

We describe a large subcategory of session state by 
describing how it is used, its properties, the 
requirements it imposes on its storage, as well as the 
functionality required to support it.  Various different 
categories of session state exist. However, in the 
remainder of this paper, we will use the term “session 
state” to refer to the subcategory of session state which 
we describe below. 
 We use the example of a user working on a web-
based enterprise-scale customer support application to 
illustrate how session state is often used. The user is 
simultaneously handling multiple customer email 
requests, and possibly taking a phone call.   
 A large class of applications, including J2EE-based 
and web applications in general, use the interaction 
model below: 

• User submits a request (to add notes to a case), 
request is routed to a stateless application 
server.  This server is often referred to as the 
middle-tier. 

• Application server retrieves the full session 
state for user (which includes the current 
application state). 

• Application server runs application logic (to 
add the notes to the case) 

• Application server writes out entire session 
state

• Results are returned to the user’s browser 

 Session state must be present on each interaction, 
since user context or workflow is stored in session 
state.  If it is not, the user’s workflow and context is 
lost, which is seen as an application failure to the end 
user, and is usually unacceptable from a product 
requirement standpoint. Session state retrieval is in the 
critical path of the control path – processing cannot 

continue unless session state has been retrieved. 
Typically, session state is on the order of 3K-200K [2].   
 Some important properties/qualities of the session 
state we focus on are listed below.  Session state: 

1. Is accessed in a serial fashion (no 

concurrent access). Each user reads her own 
state. Unlike state in its full generality, session 
state is accessed in a fixed pattern of 
alternating reads and writes:  Read 1 of session 
state for user U is followed by Write 1, which
is followed by Read 2, followed by Write 2.

2. Is semi-persistent. Session state must be 
present for a fixed interval T, but can be 
deleted after T has elapsed. T is application 
specific, and usually on the order of minutes to 
hours.

3. Is keyed to a particular user. An advanced 
query mechanism to do arbitrary searches is 
not needed. 

4. Is updated on every interaction. Session 
state such as user context in a web-based 
application is updated in its entirety on every 
interaction, as described earlier.  A new copy 
of the state is written on every interaction. 

5. Does not need ACID [7] semantics.  Session 
state is transient, and state that requires 
transactions is not included in the class of 
session state we address. 

Given these properties, the functionality necessary 
for a session state store can be greatly simplified (each 
point corresponds to an entry in the previous numbered 
list):

1. No synchronization is needed. Since the 
access pattern corresponds to an access of a 
single user making serial requests, no 
conflicting accesses exist, and hence race 
conditions on state access are avoided, which 
implies that locking is not needed. 

2. State stored by the repository need only be 

semi-persistent – a temporal, lease-like [3] 
guarantee is sufficient, rather than the 
“durable” guarantee that is made in ACID [7]. 

3. Single-key lookup API is sufficient. Since
state is keyed to a particular user and is only 
accessed by that user, a general query 
mechanism is not needed. 

4. Previous values of state keyed to a 

particular user may be discarded. 

5. Only atomic update is necessary; partial 
writes of a user’s state would result in internal 
inconsistency and incorrect behavior.  Each 
write writes out all of the user’s session state; 
consistency is trivial and isolation is 
guaranteed.  Durability is not needed. 
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3. Inadequacy of existing solutions

 Currently, session state storage is done with one of 
the following mechanisms: Relational database (DB), 
file system (FS), single-copy in-memory, replicated in-
memory. 

Frequently, enterprises use either the DB or FS to 
store session state because they already use a DB or FS 
for persistent state. This potentially simplifies 
management, since only one type of administrator is 
needed.   However, there are several drawbacks to 
using either a DB or FS to handle session state, besides 
the costs of additional licenses and complexity of 
administration:   
 D1 Contention. Unless a separate DB/FS is 

created for session state, requests for session 
state and requests for persistent objects 
contend for the same resources.  Session state 
read/write requests are frequent, which can 
interfere with requests for persistent objects 
that are housed by the same physical resource.  

 D2 Failure and recovery is expensive. If a crash 
occurs, recovery of the DB or FS may be slow, 
often on the order of minutes or even hours.  
Recovery time for a DB can be reduced if 
checkpointing is done frequently; however, 
checkpointing reduces performance under 
normal operation. There exist DB/FS solutions 
that have fast recovery, but these tend to be 
quite costly [9].  Even if recovery is on the 
order of seconds, in a large scale application, 
hundreds or thousands of users may see a 
failure if they attempt to contact the server at 
the time of recovery. 

 D3 Session cleanup is an afterthought. After 
state is put into a DB or FS, some process has 
to come back and look at the data and expire 
it, or else the data continues growing without 
bound.  Reclaiming expired sessions degrades 
performance of other requests to the DB or FS. 

 D4 Potential performance problems.
Reading/writing state objects to a DB/FS may 
sometimes incur a disk access in addition to a 
network roundtrip. 

 On the other hand, in-memory solutions (IMS) 
avoid several of the drawbacks of FS and DB, and are 
generally faster than FS/DB oriented solutions.  
Existing in-memory solutions require a user to be 
pinned to a particular server. The application-
processing tier is no longer stateless; session state is 
being stored by the application server; it must serve the 
dual roles of application processing as well as 
providing state storage. Because of pinning, load-

balancing can only be done at the user level and not at 
the request level. 
 If only a single copy of a user’s session state is 
stored on a corresponding application server, on a 
server crash, state for some users is lost.  The crash will 
be manifested to users as an app failure, which is 
usually unacceptable. 
 A primary-secondary scheme is often used for a 
replicated solution, such as the one adopted by BEA 
WebLogic™ [5], a J2EE application server. Further 
details can be found in [5].  Updates are synchronously 
propagated to both primary and secondary servers.   

There are several potential problems (Note that 
some of the deficiencies of DB/FS solutions are shared 
by WebLogic™, as mentioned below): 
 D5  Performance is degraded on secondaries.

D5 is related to D1.  Instead of only providing 
application processing, secondary application 
servers face contention from session state 
updates that are propagated from the 
primaries.  This is in comparison to the 
database and file system solution, where a 
single application server handles a particular 
user request.  In the primary/secondary 
solution, secondaries must devote resources to 
being backups in addition to serving requests. 

 D6 Recovery is more difficult (special case code 

for failure and recovery). The middle-tier is 
now stateful, which makes recovery more 
difficult.  Special-case failure recovery code is 
necessary, e.g. secondaries must detect the 
failure of a primary and become the primary 
and elect a new secondary. 

 D7 Poor failure and recovery performance.  If a 
server A chooses another server B to be its 
secondary for all requests, assuming equal 
load across all servers, upon failure of a 
primary A, the secondary B will have to serve 
double load – B must act as primary for all of 
A’s requests as well as its own.  Similar logic 
applies to B’s secondary, which experiences 
twice the secondary load. 

 D8 Lack of separation of concerns. The 
application server now provides state storage, 
in addition to application logic processing.  
These two are very different functions, and a 
system administrator should be able to scale 
each separately.

 D9 Performance coupling. If a secondary is 
overloaded, then users contacting a primary 
for that secondary will experience poor 
performance behavior as well.  Because of the 
synchronous nature of updates from primary to 
secondary, if the secondary is overloaded, e.g. 
from faulty hardware or user load, the primary 
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will have to wait for the secondary before 
returning to the user, even if the primary is 
under-loaded [4].  

 Note that any replication scheme requiring 
synchronous updates will necessarily exhibit 
performance coupling. Whenever a secondary is slow 
for any reason, any primary served by that secondary 
will block.   
 If secondaries are chosen on a per-user level (i.e. 
users sharing the same primary may have different 
secondaries), after a failure of a single server, the entire 
cluster will be coupled, assuming that the load balancer 
load balances correctly.  This is particularly worrisome 
for large clusters, where node failures are more likely 
because of the number of nodes.  An industry expert 
has confirmed that this is indeed a drawback for 
existing solutions [6]. Furthermore, application servers 
often use shared resources such as thread pools, and 
slowness in the secondary will hold resources in the 
primary for longer than necessary. 

4. Design and Implementation 

In this section, we describe the design and 
implementation of SSM, discussing the salient features 
of SSM.

We assume a physically secure cluster, along with 
a commercially-available high throughput, low latency 
redundant system area network (SAN) that can achieve 
high throughput with extremely low latency.  An 
uninterruptible power supply reduces the probability of 
a system-wide simultaneous hardware outage.  

We have implemented a working system using 
Java, running on the UC Berkeley Millennium Cluster 
[16].   The cluster is composed of 42 IBM xSeries 330 
1U rackmounted PCs, each running Linux 2.4.18 on 
Dual 1.0 GHz Intel Pentium III CPUs and 1.5GB ECC 
PC133 SDRAM, connected via Gigabit Ethernet. 

Figure 1. Architecture

Overview

SSM has two components: bricks and stubs.  
Bricks are the storage mechanism; stubs dispatch 
requests to appropriate bricks. On a client request, the 
application server will first ask the stub to read the 
client’s session state, and after application processing, 
to write out the new session state.  The general strategy 
employed by the stub for both reads and writes is “send 
to many bricks, wait for few to reply.”   

A brick stores session state objects by using an in-
memory hash table. Conceptually, a brick is simply a 
processor, a network interface, and memory.  Each 
brick sends out periodic beacons to indicate that it is 
alive.   

The stub is used by applications to read and write 
session state.  The stub interfaces with the bricks to 
store and retrieve session state.  Each stub also keeps 
track of which bricks are currently alive. 
 The write interface exported by the stub to the 

application is Write(HashKey H, Object v, 
Expiry E) and returns a cookie as the result of a 

successful write, or throws an exception if the write 
fails.  The returned cookie should be stored on the 

client. The read interface is Read(Cookie C)and

returns the last written value for hash key H, or throws 
an exception if the read fails. If a read/write returns to 
the application, then it means the operation was 
successful.  On a read, we guarantee that the returned 
value is the most recently written value (recall that the 
type of session state we are dealing with is accessed 
serially by a single user). 
 The stub propagates write and read requests to the 
bricks.  Before we describe the algorithm describing the 
stub-to-brick interface, let us define a few variables. 
 Call W the write group size.  A stub attempts to 
write to W of the bricks, and read from R bricks. Define 
WQ as the write quota, which is the minimum number 
of bricks that must return “success” to the stub before 
the stub returns to the caller. We use the term quota to 
avoid confusion with the term quorum; quorums are 
discussed in section on related work. WQ – 1 is the 
number of simultaneous brick failures that the system 
can tolerate before losing data. Note that 1 � WQ � W,

1 � R, and R � W. Lastly, call t the timeout interval, an 
amount of time that the stub waits for a brick to reply to 
an individual request.   Note that t is different from the 
session expiration, which is the lifetime of a session 
state object. 

Basic Read/Write Algorithm: 

The basic write algorithm can be described as “write to 
many, wait for a few to reply.”  Conceptually, the stub 
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writes to more bricks than are necessary, and only waits 
for WQ bricks to reply.  Sending to more bricks than 
are necessary allows us to harness redundancy to avoid 
performance coupling; a degraded brick will not slow 
down a request. The algorithm is described below: 

1. Calculate checksum for object and expiration 
time. 

2. Create a list of bricks L, initially the empty set. 
3. Choose W random bricks, and issue the write 

of {object, checksum, expiry} to each brick. 
4. Wait for WQ of the bricks to return with 

success messages, or until t elapsed.  As each 
brick replies, add its identifier to the set L.

5. If t has elapsed and the size of L is less than 
WQ, throw an exception indicating that the 
system is temporarily overloaded.  Otherwise, 
continue. 

6. Create a cookie consisting of H, the identifiers 
of the WQ bricks that acknowledged the write, 
and the expiry, and calculate a checksum for 
the cookie. 

7. Return the cookie to the caller. 

The stub handles a read by sending the read to R bricks, 
waiting for only 1 brick to reply: 

1. Verify the checksum on the cookie. 
2. Issue the read to R random bricks chosen from 

the list of WQ bricks contained in the cookie. 
3. Wait for 1 of the bricks to return, or until t

elapses.
4. If the timeout has elapsed and no response has 

been returned, throw an exception indicating 
that the system is temporarily overloaded.  
Otherwise, continue. 

5. Verify checksum and expiration.  If checksum 
is invalid, repeat step 2. Otherwise continue. 

6. Return the object to the caller. 

For garbage collection of bricks, we use a method 
seen in generational garbage collectors [10].  Earlier we 
described each brick as having one hash table, for 
simplicity.  In reality, it has a set of hash tables; each 
hash table has an expiration. A brick handles writes by 
putting state into the table with the closest expiration 
time after the state’s expiration time.  For a read, the 
stub also sends the key’s expiration time, so the brick 
knows which table to look in.  When a table’s 
expiration has elapsed, it is discarded, and a new one is 
added in its place with a new expiration.

Load capacity discovery and admission control: 

 In addition to the basic read/write algorithm, each 
stub maintains a sending window (SW) for each brick, 
which the stub uses to determine the maximum number 

of in-flight, non-acked requests the stub can send to the 
recipient brick. The stub implements a TCP-like 
algorithm for maintaining the window; when a request 
is successfully acked, the window size is additively 
increased, and when a request times out, the window 
size is multiplicatively decreased.  The stub assumes 
that whenever a request to a brick times out, it is 
because the brick is unable to process the request in a 
timely manner, and therefore reduces its sending to the 
brick accordingly.  In the case when the number of in-
flight messages to a brick is equal to the SW, any 
subsequent requests to that brick will be rejected until 
the number of in-flight messages is less than the SW.  If 
a stub cannot find a suitable number of bricks to send 
the request to, it throws an exception to the caller 
indicating that the system is overloaded.  Each stub 
stores only temporary state for the requests that are 
awaiting responses from bricks.  The stub performs no 
queueing for incoming requests from clients.  For any 
request that cannot be serviced because of overload, the 
stub rejects the request immediately, throwing an 
exception to the caller indicating that the system is 
temporarily overloaded. 
 Each brick also performs admission control; when 
a request arrives at the brick, it is put in a queue. If the 
timeout has elapsed by the time that the brick has 
dequeued the request, the request is disregarded and the 
brick continues to the service the next queued request. 
 Note that the windowing mechanism at the stub 
and the request rejection at the brick protect the system 
in two different ways.  At the stub, the windowing 
mechanism prevents any given stub from saturating the 
bricks with requests.  However, even with the 
windowing mechanism, it is still possible for multiple 
stubs to temporarily overwhelm a brick (e.g. the brick 
begins garbage collection and can no longer handle the 
previous load).  At the brick, the request rejection 
mechanism allows the brick to throw away requests that 
have already timed out in order to “catch up” to the 
requests that can still be serviced in a timely manner. 

Recovery

 If a node cannot communicate with another, we 
assume it is because the other node has stopped 
executing.
 On failure of a client, the user perceives the session 
as lost, i.e. if the browser crashes, a user does not 
expect to be able to resume her interaction with a web 
application. 
 On failure of an application server, a simple restart 
of the server is sufficient since it is stateless.  The stub 
on the server detects existing bricks from the beacons 
and can reconstruct the table of bricks that are alive. 
The stub can immediately begin handling both read and 
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write requests; to service a read request, the necessary 
metadata is provided by the client in the cookie, and to 
service a write request, all that is required is a list of 
WQ live bricks. 
 On failure of a brick, a simple restart of the brick is 
necessary.  All state on that brick is lost; however, the 
state is replicated on (WQ – 1) other bricks, and so no 
data is lost.  Furthermore, because session state is 
frequently accessed by the end user with the read/write 
pattern discussed earlier, on a subsequent user request, 
a write will create WQ new copies\, and the system can 
once again tolerate (WQ – 1) faults without losing data. 
 An elegant side effect of having simple recovery is 
that clients, servers, and bricks can be added to a 
production system to increase capacity.  For example, 
adding an extra brick to an already existing system is 
easy. Initially, the new brick will not service any read 
requests since it will not be in the read group for any 
requests.  However, it will be included in new write 
groups because when the stub detects that a brick is 
alive, the brick is a candidate for a write. Over time, the 
new brick will receive an equal load of read/write 
traffic as the existing bricks. 

Recovery Philosophy 

 Previous work has argued that rebooting is an 
appealing recovery strategy in cases where it can be 
made to work [19]: it is simple to understand and use, 
reclaims leaked resources, cleans up corrupted transient 
operating state, and returns the system to a known state.  
Even assuming a component is reboot-safe, in some 
cases multiple components may have to be rebooted to 
allow the system as a whole to continue operating; 
because inter-component interactions are not always 
fully known, deciding which components to reboot may 
be difficult.   In fact, [19] argues that a principal 
challenge is to quantify the cost of making a mistake.  
If the decision of which components to reboot is too 
conservative (too many components rebooted), 
recovery may take longer than really needed.  If it is too 
lenient, the system as a whole may not recover, leading 
to the need for another recovery attempt, again resulting 
in wasted time. 
 By making recovery “free” in SSM, we largely 
eliminate the cost of being too conservative.  If an SSM 
brick is suspected of being faulty—perhaps it is 
displaying fail-stutter behavior [20] or other 
characteristics associated with software aging [21]—
there is essentially no penalty to reboot it 
prophylactically.  This can be thought of as a special 
case of fault model enforcement: treat any performance 
fault in an SSM brick as a crash fault, and recover 
accordingly.  In recent terminology, this makes SSM a 
crash-only subsystem [22]. 

 SSM is being integrated into a larger Web 
application server called JAGR, many of whose 
components are designed to have the crash-only 
property.  We anticipate that the ease and speed of 
recovery of SSM as a subsystem will make it easier to 
develop system-wide recovery policies for JAGR. 

5. Evaluation and Results

 We present several micro-benchmarks that suggest 
that SSM satisfies the previously set forth design 
requirements.  Our load generator is composed of 
multiple machines.  The keyspace is partitioned and a 
partition is given to each of the load generating 
machines.  Each sending machine then partitions the 
keyspace further and hands off the partition to a 
sending thread. Each thread makes a pair of write and 
read requests for session state through the stub.  This 
models the worst-case behavior where a user writes and 
reads his state exactly once; this causes the hash tables 
to continually increase in size.  We also conducted 
benchmarks where a small set of users read and wrote 
their own state repeatedly; the findings were similar 
and are not presented here. 
 In this paper, we assume a fail-stop model, and 
simulate such failures by killing a process manually.  
We leave the more general case to future work.  We 
vary the number of users and bricks; results are 
presented in Figures 2, 3 and 4.  In all experiments, W
is set to 3, WQ to 2, R to 1, and t to 60 ms. The size of 
the state is 8K.

Throughput Discovery
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Figure 2. Load capacity discovery

• Self-tuning: the implemented windowing 
mechanism allows for usage of bricks at full 
capacity.  Figure 2 shows that SSM discovers 
the throughput capacity of the system.  The y-
axis labels the number of requests successfully 
serviced, while the x-axis measures time.  
Figure 2 shows the throughput for 3 bricks for 
120, 150, and 220 sending threads, without 
any admission control at the stubs or at the 
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bricks.    Note that the maximum throughput 
capacity of the 3 bricks is around 4000 
requests per second.  As the number of users 
increases to 220, the system has reached the 
point of saturation and can no longer serve any 
requests successfully because the incoming 
requests are being enqueued at a faster rate 
than they can be serviced.  However, as shown 
in Figure 2, SSM with windowing and request 
rejection discovers the maximum throughput 
capacity of the system, even with 250 sender 
threads.

• Self-protecting from overload: Using the 
windowing mechanism, a stub knows when 
particular bricks are overloaded, and knows 
when to respond to the caller that the system is 
overloaded and to try back later. Figure 2 
shows that without admission control, system 
collapse occurs with 220 senders; even with 
250 senders, SSM with windowing and request 
rejection allows for maximum system 
throughput without collapse. 

• Self-healing:
o SSM can tolerate WQ-1 faults without 

data loss. Furthermore, assuming faults 
are independent, since the data is 
replicated in WQ bricks, if a brick 
crashes, recovery is unnecessary. Data is 
“rejuvenated” to WQ bricks on the 
subsequent write request.

o It is possible to kill at most WQ-1 bricks 
and restart them without data loss. 
Furthermore, the system can tolerate W-
WQ performance faults without degrading 
response time.

o Figure 3 shows that killing a brick reduces 
the number of requests serviced per 
second (since the load generated is higher 
than what 3 bricks can sustain), and that 
SSM recovers to the appropriate load 
capacity.  Figure 4 shows that when a 
brick is restarted after a failure, total 
system capacity is restored.  Although 
SSM has not explored an appropriate 
policy for killing and restarting bricks, the 
potential of stopping and restarting bricks 
so to heal the system is clearly 
demonstrated by our initial experiments.

 If we assume a user “think time” or inter-request 
interval of 20 seconds, SSM, with 4 bricks, is able to 
handle approximately 100,000 users with the system 
parameters described earlier. 
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Figure 3. System reaction to brick failure 
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Figure 4. Failure and recovery of brick 

6. Future Work 

 Our preliminary work has shown that SSM reacts 
well to spikes in workload, and allows requests to flow 
through the system at maximum capacity without 
causing system collapse.  We hope to demonstrate this 
with detailed measurements using actual traces from 
applications.   Garbage collection also remains to be 
implemented. 
 In this paper, we have assumed a fail-stop model.  
In the full version of the paper, we hope to explore the 
effect of faulty bricks (e.g. unusually slow response 
time, livelock) on the windowing system.   We intend 
on integrating Pinpoint, which monitors systems for 
anomalous behavior, to detect failing or stuttering 
bricks. 

7. Related Work 

In related work, a similar mechanism is used in 
quorum-based systems [11, 12].  In quorum systems, 
writes must be propagated to W of the nodes in a 
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replica group, and reads must be successful on R of the 
nodes, where R + W > N, the total number of nodes in a 
replica group. A faulty node will often cause reads to be 
slow, writes to be slow, or possibly both.  Our solution 
obviates the need for such a system, since the cookie 
contains the references to up-to-date copies of the data; 
quorum systems are used to compare versions of the 
data to determine which copy is the current copy.  
 From distributed database research, Directory-
Oriented Available Copies [15] utilizes a directory that 
must be consulted to determine what replicas store 
valid copies of an object.  This involves a separate 
roundtrip, and the directory becomes a bottleneck.  In 
our work, we distribute the directory by sending the 
directory entries to the browser, leveraging the fact that 
for a given key, there is a single reader/writer. 
 DDS [4] is very similar to SSM.  However, one 
observed effect in DDS is performance coupling – a 
given key has a fixed replica group, and all nodes in the 
replica group must synchronously commit before a 
write completes.  DDS also guarantees persistence, 
which is unnecessary for session state. Furthermore, 
DDS exhibits poor behavior in recovery.  Even when 
DDS is lightly loaded, if a node in a replica group fails 
and then recovers, all data in the replica group is locked 
while it is copied to the recovered node, disabling write 
access to any data residing on the replica group.  
Furthermore, DDS exhibits negative cache warming 
effects; when a DDS brick is recovered, performance of 
the cluster first drops (because of cache warming) 
before it increases.  This effect is not present in our 
work, since recovered/new bricks do not serve any read 
requests.  The failure and recovery of bricks does lock 
any data and cause any data to be unavailable. 
 We share many of the same motivations as 
Berkeley DB [14], which stressed the importance of 
fast-restart and treating failure as a normal operating 
condition, and recognized that the full generality of 
databases is sometimes unneeded. 
 The windowing mechanism used by the stubs is 
motivated by the TCP algorithm for congestion control 
[17].  The need to include explicit support for 
admission control and overload management at service 
design time was demonstrated in SEDA [18]; we appeal 
to this argument in our use of windowing to discover 
the system’s steady-state capacity and our use of 
“backpressure” to do admission control to prevent 
driving the system over the saturation cliff.  

8. Conclusions 

Several properties of session state enable us to 
greatly simplify the design of SSM.  We rely on the fact 
that the cookie names which bricks store the state, and 

therefore never need to query a majority of the bricks 
on requests, as in quorum-based systems.  Because 
session-state is frequently updated, SSM does not need 
to proactively maintain WQ copies of the data after a 
brick crash, since on the next update the data will be 
rejuvenated, and WQ new copies of the data will be 
written. Furthermore, recovery is simple because a new 
brick begins servicing new writes, and does not to copy 
over data from other bricks.  Because session state is 
keyed to a particular user, SSM does not need a full 
query mechanism, and the standard Java hashtable is 
sufficient.
 We believe SSM properly leverages the properties 
of session state, providing a self-protecting, self-tuning, 
self-healing, instantly-recovering session state 
management layer. 
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