Difference between revisions of "Operating Systems (Fall 2014)"

From Soma-notes
Jump to navigation Jump to search
Line 297: Line 297:
       </td>
       </td>
       <td>
       <td>
       <p>[[Operating Systems 2014F: Tutorial 2|Scheduler, Process Priorities]]
       <p>[[Operating Systems 2014F: Tutorial 2|Simple Shell]]
       </p>
       </p>
       </td>
       </td>
Line 307: Line 307:
       </td>
       </td>
       <td>
       <td>
       <p>[[Operating Systems 2014F: Tutorial 3|Virtual memory, /proc, ELF]]
       <p>[[Operating Systems 2014F: Tutorial 3|Scheduler, Process Priorities, /proc, ELF]]
       </p>
       </p>
       </td>
       </td>
Line 317: Line 317:
       </td>
       </td>
       <td>
       <td>
       <p>[[Operating Systems 2014F: Tutorial 4|Threads, Concurrency]]
       <p>[[Operating Systems 2014F: Tutorial 4|Character devices, kernel modules]]
       </p>
       </p>
       </td>
       </td>
Line 327: Line 327:
       </td>
       </td>
       <td>
       <td>
       <p>[[Operating Systems 2014F: Tutorial 5|Character devices, kernel modules]]
       <p>[[Operating Systems 2014F: Tutorial 5|Threads, Concurrency]]
       </p>
       </p>
       </td>
       </td>

Revision as of 12:06, 12 September 2014

Course Outline

Here is the course outline for COMP 3000: Operating Systems.

Lectures and Exams

Note that the topics below are primarily chapters from the class textbook, Operating Systems: Three Easy Pieces.

Date

Topic

Sept. 5

Lecture 1: Introduction

Sept. 10

Lecture 2: Processes, Process API

Sept. 12

Lecture 3: Limited Direct Execution

Sept. 17

Lecture 4

Sept. 19

Lecture 5

Sept. 24

Lecture 6

Sept. 26

Lecture 7

Oct. 1

Lecture 8

Oct. 3

Lecture 9

Oct. 8

Lecture 10

Oct. 10

Lecture 11

Oct. 17

Lecture 12

Oct. 22

Midterm (in class)

Oct. 24

Midterm solutions

Nov. 5

Lecture 13

Nov. 7

Lecture 14

Nov. 12

Lecture 15

Nov. 14

Lecture 16

Nov. 19

Lecture 17

Nov. 21

Lecture 18

Nov. 26

Lecture 19

Nov. 28

Lecture 20

Dec. 3

Lecture 21

Dec. 5

Lecture 22

TBA

Final Exam

Tutorials

Each week you will get a progress grade from 0-4, given to you by a TA. If you are being diligent, you should be able to get 4's every week. The easiest way to get your grade is to come to tutorial and meet with your TA; alternately, you can meet a TA in their office hours or, at their discretion, discuss things with them online.

Date

Tutorials

Sept. 5,8

UNIX Introduction

Sept. 12, 15

Simple Shell

Sept. 19, 22

Scheduler, Process Priorities, /proc, ELF

Sept. 26, 29

Character devices, kernel modules

Oct. 3, 6

Threads, Concurrency

Oct. 17, 20

Review

Nov. 7, 10

Block devices, Filesystems

Nov. 14, 17

User-mode Filesystems

Nov. 21, 24

Partitions and boot loaders

Nov. 28, Dec. 1

Operating Systems 2014F: Networking, Network Filesystems

Assignments

Due Date

Assignments

Sept. 10

Assignment 1

Sept. 17

Assignment 2

Sept. 24

Assignment 3

Oct. 1

Assignment 4

Oct. 8

Assignment 5

Oct. 16 (Thurs.)

Assignment 6

Nov. 12

Assignment 7

Nov. 19

Assignment 8

Nov. 26

Assignment 9

Dec. 3

Assignment 10

Course Software

In this course we will primarily working with Lubuntu, a low-resource variant of Ubuntu Linux distribution. You may use other Linux distributions in the tutorials to complete the assigned work; there will be differences, however, in some aspects (such as installing software), particularly if you use a distribution not based on Ubuntu or Debian.

In the labs

In the SCS labs you should be able to run the course VM by starting Virtualbox (listed in the Applications menu) and selecting the COMP 2406/3000 virtual machine image. After the VM has fully booted you will be automatically logged into the student account; this account has admin privileges and its password is "tneduts!".

We highly recommend running your VM in full-screen mode (select from the menu, not by maximizing the window). Do all of your work inside of the VM; it should be fast enough and you won't have any issues with sharing files or with firewalls/network connectivity.

You can save the work you do from the course VM (in the student account) to your SCS account and restore it to any other copy of the class VM (on your machines or in the labs) by running using the following commands:

 save3000 <SCS username>
 restore3000 <SCS username>
 compare3000 <SCS username>

If you use these commands, use them consistently. That means run restore3000 when you first log in, and run save3000 just before logging out. If you don't do this, you will erase the work that you had done previously when you save.

If you forgot to restore and you want to save, try running this:

  rsync -a -v --progress ~/ <SCS username>@access.scs.carleton.ca:COMP3000/

This is the same as the save3000 command minus the options (--delete and --force) that deletes files in the destination that don't exist in the source. As a check, you may want to add the -n option to do a dry run.

Running the VM on your own machines

If you want to run the VM appliance on your own system (running essentially any desktop operating system you want), just download the virtual appliance file and import. The SHA1 hash of this file is:

 e5613881b28be41f49b82730282d40093388ee71  COMP 2406-3000 Fall 2014.ova

On Windows you can compute this hash for your downloaded file using the command FCIV -sha1 COMP 2406-3000 Fall 2014.ova. If the hash is different from above, your download has been corrupted.

If the application is not VirtualBox, you'll need to:

  • Have the VM platform ignore any errors in the structure of the appliance found during the import process;
  • Uninstall the VirtualBox guest additions by typing starting a terminal application and running
  sudo apt-get purge virtualbox-guest-x11 virtualbox-guest-utils
  • Install your platform's own Linux guest additions, if available.