
Name: Student ID #:

COMP 2406: Fundamentals of Web Applications

Winter 2016 Mid-Term Exam

February 11, 2016

This exam has 6 pages (including this one). There are 15 questions worth a total of 30 points. Answer all
questions in an exam booklet. This exam is closed: no books, notes, or electronic aids. Most of the questions refer
to the code of examdemo. This code is listed on pages 5 and 6 of this exam. You may want to detach this page
for ease of reference. When asked to fix portions of the program, you may explain the strategy for your fix (how
you would do it) rather than give precise code. You have 80 minutes. Good luck!

1. (3) What is the type of the values associated with all of the symbols referenced in line examforms.js:44?
Specifically, what is the type of the values bound to server, on, and serverUp?

A: server: object, on: function, serverUp: function

2. (2) If I create a line 46 in examforms.js (i.e., add a line to the end of the file) that says ’console.log(”Finished!”);’,
when will finished! be printed relative to the other output of the program? Explain your reasoning.

A: “Finished!” should generally be printed first, before any other output, because all of the other output
is produced by callbacks and they are normally executed after the main body of the file has been evalu-
ated. It is acceptable to say that you don’t actually know when it will be printed since you can’t know
for certain when callbacks will be invoked; however, the mainly single-threaded computation model of
JavaScript makes this sort of interleaving very unlikely (unless you use something like web workers).

3. (2) If you change the app.post() call to an app.get() call on examforms.js:19, how would the program no longer
function properly? Is it possible to repair it without changing this line back to app.get()? (yes or no)

A: It would no longer function properly because the form submission generates a “POST /add” HTTP
request and that HTTP request is no longer recognized by the server. Yes. (If you change the form’s
method (index.jade:8) to get and make the function access parameters as passed by GETs (req.query
rather than req.body) then it would be fixed.)

4. (2) As written, examforms returns a 404 error for requests to style.css. What is wrong with examforms? How
could you fix it?

A: examforms has no way of serving static files. You’d either have to create a custom route that would
load the style sheet manually, or you’d have to include the line normally used in express node applica-
tions to add static server support. (Specifically, you’d add app.use(express.static(dirname));
around examforms.js:14.)

5. (2) The request object (req) passed in to route handlers has a “headers” property, just as the request objects in
tinywebserver.js. Given this fact, how could you change examforms so that it uses a different style sheet when
receiving requests from iPhones? (Describe the general strategy, no need for all the implementation details.)

A: We would just have to check the value of req.headers[“user-agent”] to see if it contained the string
“iPhone” in each route handling function. We’d then have to either use different jade files for iPhones
that used the different stylesheet, or we’d move the stylesheet from layout.jade and instead pass it in
like we do the title of the page.

6. (2) When a web browser loads a standard web page, what type of HTTP request does it make of the server?
And, if the requested URL is invalid (i.e., page not found), what is the standard response code?

A: HTTP GET; 404

7. (2) How could you change examforms so you could specify the PORT on the command line, e.g. you’d run
node examforms.js 7000 to have it listen on port 7000? If no port is specified it should listen on port
3000.

A: Add a line to set the port variable based on the value of process.argv[2], e.g. var port = pro-
cess.argv[2] —— 3000;

8. (1) What is the purpose of the Content-Type: HTTP response header?

A: It tells the browser the type of content being returned, whether it is a plain text file (text/plain),
an HTML document (text/HTML), an image (image/jpeg), etc.

9. (2) When the call to app.get on lines 15–17 of examforms.js returns, what work has it accomplished? Specifi-
cally what data (if any) has been returned to the requesting web client? Why?

A: After these lines have been written a function has been defined and it has been registered as a call-
back for an HTTP GET / request. The anonymous function has not been called; it will only be invoked
when there is an HTTP GET / request.

10. (2) When is the function serverDown(), on lines 37-40 of examforms.js, called? How can a user cause this
function to be called?

A: This function is called when the server receives a SIGINT signal. This signal is generated when
a user presses Ctrl-C at the command line.

2

11. (2) What would happen to examforms if we deleted layout.jade:6 (block header)? What about layout.jade:8
(block countent)?

A: If you delete line 6, nothing would happen as this blok isn’t used in any of the templates. Delet-
ing line 8 would make the body of all pages blank.

12. (2) The each statement on list.jade:16 is a loop. What does this loop do? Where is it executed (server or
browser)?

A: This loop generates a table line for every person stored in the state array (passed to the template
on examforms.js:30). It runs on the server as it is a Jade loop. The browser simply gets a fully popu-
lated table.

13. (2) What would happen (if anything) if you removed two spaces from the beginning of list.jade:25,
button(type="submit") Home?

A: By removing these spaces the button is no longer indented under the form on line 24; thus now
it is a submit button that is no longer enclosed inside of an HTML form. Thus while the button will still
be present in the page, clicking it will now do nothing.

14. (2) Do web browsers normally run/interpret Jade code? Explain briefly.

A: Web browsers do not interpret Jade code; instead, they interpret the HTML that is produced by
compiling Jade templates.

15. (2) What does res.redirect(/list); on line 26 of examforms.js do? Specifically, what response is
(eventually or immediately) sent back to the browser after this line is executed? Explain briefly.

A: This line causes a 302 (permanent redirect) response to be sent back to the browser with /list as
the new location. The browser then proceeds to do an HTTP GET /list which then causes the callback
for /list to be run on the server (and return the corresponding page).

This is extra space for answering questions.

3

examforms.js:
1 var http = require(’http’);
2 var express = require(’express’);
3 var bodyParser = require(’body-parser’);
4 var logger = require(’morgan’);
5 var port = 3000;
6 var state = [];
7
8 var app = express();
9

10 app.set(’view engine’, ’jade’);
11 app.set(’views’, __dirname);
12 app.use(logger(’dev’));
13 app.use(bodyParser.urlencoded({ extended: false }));
14
15 app.get(’/’, function(req, res, next) {
16 res.render(’index’, { title: ’COMP 2406 Exam form demo’ });
17 });
18
19 app.post(’/add’, function(req, res) {
20 var obj = { name: req.body.name,
21 city: req.body.city,
22 country: req.body.country,
23 birthday: req.body.birthday,
24 email: req.body.email };
25 state.push(obj);
26 res.redirect(’/list’);
27 });
28
29 app.get(’/list’, function(req, res) {
30 res.render(’list’, { title: ’People Listing’, items: state});
31 });
32
33 var serverUp = function() {
34 console.log("ExamForms listening on port " + port);
35 }
36
37 var serverDown = function() {
38 console.log("Server shutting down.");
39 process.exit(0);
40 }
41
42 var server = http.createServer(app);
43 server.listen(port);
44 server.on(’listening’, serverUp);
45 process.on(’SIGINT’, serverDown);

layout.jade:
1 doctype html
2 html
3 head
4 title= title
5 link(rel=’stylesheet’, href=’/style.css’)
6 block header
7 body
8 block content

4

index.jade:
1 extends layout
2
3 block content
4 h1= title
5
6 div
7 p Fill out your info
8 form(method="post", action="/add")
9 div

10 input#name(type="text", name="name")
11 label Name
12 div
13 input#country(type="text", name="city")
14 label City
15 div
16 input#country(type="text", name="country")
17 label Country
18 div
19 input#birthday(type="text", name="birthday")
20 label Birthday
21 div
22 input#email(type="text", name="email")
23 label Email
24 button(type="submit") Submit

list.jade:
1 extends layout
2
3 block content
4 h1= title
5
6 div
7 div
8 table
9 thead

10 th Name
11 th City
12 th Country
13 th Birthday
14 th Email
15 tbody
16 each item in items
17 tr
18 td #{item.name}
19 td #{item.city}
20 td #{item.country}
21 td #{item.birthday}
22 td #{item.email}
23
24 form(method="get", action="/")
25 button(type="submit") Home

style.css:
1 body {
2 padding: 50px;
3 font: 14px "Lucida Grande", Helvetica, Arial, sans-serif;
4 }
5 a {
6 color: #00B7FF;
7 }

5

