
WebOS: Operating System Services for Wide Area Applications�
Amin Vahdaty Thomas Andersonz Michael Dahlinx Eshwar Belaniy David Cullery

Paul Easthamy Chad Yoshikaway
Abstract

In this paper, we demonstrate the power of providing
a common set of Operating System services to wide-area
applications, including mechanisms for naming, persistent
storage, remote process execution, resource management,
authentication, and security. On a single machine, appli-
cation developers can rely on the local operating system to
provide these abstractions. In the wide area, however, ap-
plication developers are forced to build these abstractions
themselves or to do without. This ad-hoc approach often re-
sults in individual programmers implementing non-optimal
solutions, wasting both programmer effort and system re-
sources. To address these problems, we are building a sys-
tem, WebOS, that provides basic operating systems services
needed to build applications that are geographically dis-
tributed, highly available, incrementally scalable, and dy-
namically reconfigurable. Experience with a number of ap-
plications developed under WebOS indicates that it simpli-
fies system development and improves resource utilization.
In particular, we use WebOS to implement Rent-A-Server
to provide dynamic replication of overloaded Web services
across the wide area in response to client demands.

1 Introduction

While the World Wide Web has made geographically
distributed read-only data easy to use, geographically dis-
tributed computing resources remain difficult to access. As�This work was supported in part by the Defense Advanced Re-
search Projects Agency (N00600-93-C-2481, F30602-95-C-0014), the
National Science Foundation (CDA 9401156), Sun Microsystems, Cal-
ifornia MICRO, Novell, Hewlett Packard, Intel, Microsoft,and Mit-
subishi. Anderson was also supported by a National Science Founda-
tion Presidential Faculty Fellowship. Dahlin was also supported by a
NSF CAREER award (CCR 9733742). For more information, please see
http://now.cs.berkeley.edu/WebOS.yComputer Science Division, University of California, BerkeleyzDepartment of Computer Science and Engineering, University of
Washington, SeattlexComputer Science Department, University of Texas, Austin

a result, wide-area applications that require access to re-
mote CPU cycles, memory, or disk must be programmed
in an ad-hoc and application-specific manner. For example,
many popular services, such as Digital's Alta Vista [12] or
Netscape's download page [31], are geographically repli-
cated to improve bandwidth, reduce latency, and improve
availability—no single connection onto the Internet can
support tens of millions of users. Today, such replication is
manually managed on both the server and the client side—
users are forced to poll several essentially equivalent ser-
vices and system managers must manually distribute up-
dates to replicas. This situation will only get worse; it is
currently predicted that the number of Internet users will
increase by an order of magnitude to over 100 million in
less than 5 years [34].

To address these problems, we are building WebOS,
a framework for supporting geographically distributed,
highly available, incrementally scalable, and dynamically
reconfiguring applications. WebOS includes mechanisms
for global naming [48], persistent storage [43, 42], re-
mote process execution, resource management, authentica-
tion and security [4]. We use WebOS to demonstrate the
synergy of these services in simplifying the development of
wide-area distributed applications and in providing more ef-
ficient global resource utilization. The WebOS framework
enables a new paradigm for Internet services. Instead of be-
ing fixed to a single location, services can dynamically push
parts of their functionality out onto Internet computing re-
sources, and even all the way to the client.

Dynamically reconfiguring and geographically mobile
services provide a number of advantages, including: (i) bet-
ter end-to-end availability (service-specific extensions run-
ning in the client mask Internet or server failures), (ii) bet-
ter cost-performance (by dynamically moving information
closer to clients, network latency, congestion, and cost can
all be reduced while maintaining server control), and (iii)
better burst behavior (by dynamically recruiting resources
to handle spikes in demand). For example, many Inter-
net news services were overwhelmed on the night of the
last U.S. presidential election; our framework would enable
those services to handle the demand through dynamic repli-



cation. Recently, there has been a push toward the distri-
bution of active components in the network, through tech-
nologies such as Active Networks [40] and Java [19]. The
goal of WebOS is to provide a framework to assist appli-
cation developers in utilizing programmable and active net-
work components.

In this paper, we present an overview of the WebOS ef-
fort and a snapshot of the current status of our implementa-
tion. WebOS is composed of a number of different compo-
nents. In the space allowed, we can only briefly describe the
main ideas behind individual components, each of which is
described in detail elsewhere [48, 43, 4, 42]. We have com-
pleted prototypes of each component and are now working
to integrate them. The end goal is to provide a platform
for the development and deployment for wide-area applica-
tions. Toward this end, we demonstrate an extensible mech-
anism for running service-specific functionality on client
machines and show that this allows for more flexible im-
plementation of name resolution, load balancing, and fault
tolerance. Second, we provide a file system abstraction that
combines persistent storage with efficient wide-area com-
munication patterns; we demonstrate that this simplifies the
implementation of a number of wide-area applications, in-
cluding Internet chat and a remote compute server. Next,
we describe a security infrastructure that facilitates the fine-
grained transfer of rights across the wide area.

To demonstrate the utility of WebOS as a substrate for
the development of wide-area applications, we motivate and
describe our implementation of Rent-A-Server, an applica-
tion that allows for transparent, automatic, and dynamic
replication of HTTP service across the wide area in re-
sponse to client load. Rent-A-Server also demonstrates the
power of exporting common operating system abstractions
to wide-area applications; WebOS services simplified both
the design and implementation of Rent-A-Server.

The rest of this paper is organized to discuss each com-
ponent of WebOS in turn. In Section 2, we present an
overview of WebOS system components, before delving
into more detail in Sections 3-6, which describe: (i) Smart
Clients and for fault tolerant, load balanced access to Web
services, (ii) WebFS, a global cache coherent file system,
(iii) authentication for secure access to global Web re-
sources, and (iv) a process control model supporting secure
program execution and mechanisms for resource allocation,
. Section 7 demonstrates how this framework simplifies the
implementation of four sample wide area applications. Sec-
tion 8 describes in detail the design, implementation, and
performance of one application built on WebOS, Rent-A-
Server. Section 9 presents related work, leading to our con-
clusions in Section 10.

2 WebOS Overview

In this section, we provide a brief overview of the major
WebOS components; together, they provide the wide-area
analogue to local area operating system services, simplify-
ing the use of geographically remote resources. Each of
these components is operational in our current prototype.� Global Naming: Many wide-area services are geo-

graphically distributed. To provide the best overall sys-
tem performance, a client application must be able to
dynamically locate the server able to deliver the high-
est quality of service. In WebOS, global naming in-
cludes mapping a service name to multiple servers, an
algorithm for balancing load among available servers,
and maintaining enough state to perform fail-over if a
server becomes unavailable. These operations are per-
formed through Smart Clients, which flexibly extend
service-specific functionality to the client machine.� Wide-Area File System:To support replication and
wide-scale sharing, WebOS provides a cache coherent
wide-area file system. WebOS extends to wide-area
applications running in a secure HTTP name space
the same interface, caching, and performance of ex-
isting distributed file systems [46, 30, 21, 25, 41, 2].
In addition, we argue for benefit of integrating the file
system with application-controlled efficient wide-area
communication [43, 42].� Security and Authentication:To support applications
operating across organizational boundaries, WebOS
defines a model of trust providing both security guar-
antees and an interface for authenticating the identity
of principals [4]. A key enabling feature is fine-grained
control of capabilities provided to remote processes
executing on behalf of principals.� Process Control:In WebOS, executing a process on a
remote node should be as simple as the corresponding
local operation. The underlying system is responsi-
ble for authenticating the identity of the requester and
determining if the proper access rights are held. Pre-
cautions must be taken to ensure that the process does
not violate local system integrity and that it does not
consume more resources than allocated to it by local
system administrators.

As an explicit design choice, we leverage as much func-
tionality as possible from existing low level services. For
example, for compatibility with existing applications, we
adopt IP addresses and URL's for the global namespace,
TCP to provide reliable communication, and SSL [17] for
link level security.



3 Naming

In this section, we discuss an abstraction for location in-
dependent dynamic naming that allows WebOS clients to
locate representatives of geographically distributed and dy-
namically reconfiguring services, while providing load bal-
ancing and end-to-end high availability.

Our approach consists of a number of components. First,
a service name must be mapped to a list of replicated service
representatives. Next, a service selection decision must be
made to determine which server is able to deliver the best
performance; this evaluation is dynamic and non-binding
to cope with potentially bursty client access patterns. Fi-
nally, enough state (e.g. request content) is maintained to
perform fail over if a service provider becomes unavailable.
This section describes limitations associated with current
approaches to Internet naming and shows how WebOS ad-
dresses these limitations through the use of Smart Clients.
Our discussion focuses on naming in the context of HTTP
service accessed through URL's. We are currently in the
process of generalizing these techniques to other domains
through Active Names, pieces of code responsible for name
resolution that can be flexibly applied at different points
in the network. The flexibility of Active Names could be
used to provide URN's [36], transcoding [15, 16], resource
discovery, and other applications that may benefit from the
availability of code to perform name translation at various
points in a distributed system.

To motivate the problem of naming in WebOS, we will
use the following simple example. A user wishes to access a
replicated Web site (such as the Alta Vista search engine or
the download page for the latest version of Netscape Com-
municator). Ideally, users employ a single name for the Web
service and the system translates the name to the IP address
of the replica that will provide the best service to the client.
Ideally, such translation should account for a number of fac-
tors, such as: the current members of the replicated service,
available performance and current load at each server, net-
work connectivity, client location, and network congestion
between the client and replicas. Of course, the exact al-
gorithm weighing these factors needs to be application and
service specific. Further, given the current Internet architec-
ture, it is impossible to accurately determine all the listed
considerations, so approximations must be utilized.

In our implementation, we attempt to approach the above
ideal by loading application and server specific code into
end clients to perform perform name translation. These
Smart Clients [48] enable extensions of server function-
ality to be dynamically loaded onto the client machine.
Java's [19] portability and availability in all major Internet
browsers allow us to distribute these extensions as Java ap-
plets.

The Smart Client architecture is summarized in Figure 1.

Request

Response/
State update

GUI
Thread

Director
Thread

User
Requests

Client-Side Applet
Nearby
Mirror

Distant
Mirror

Figure 1. Two cooperating threads make up the Smart
Client architecture. The GUI thread presents the ser-
vice interface and passes user requests to the Director
Thread. The Director is responsible for picking a ser-
vice provider likely to provide best service to the user.
The decision is made in a service-specific manner. In
this case, the nearest mirror site is chosen.

A typical applet's code is composed of two cooperating
threads: a customizable graphical interface thread imple-
menting the user's view of the service and a director thread
responsible for performing load balancing among service
representatives and maintaining the necessary state to trans-
parently mask individual failures. Both the interface and
director threads are extensible in a service-specific manner.

One outstanding issue with this architecture is the choice
of load balancing algorithm. With Smart Clients, it is im-
practical to keep all clients abreast of changes in load of all
servers. Given the high variability of load in the context
of the Internet, clients using out of date information may
make strictly worse choices than clients making random de-
cisions [29]. Fortunately, Smart Clients can use more static
state information to influence the load balancing decision,
such as available servers, server capacity, server network
connectivity, server location, and client location.

Although the load balancing algorithm can be service
specific, we implement the following algorithm by default.
Service state, such as replicated group membership and
load information, is piggy-backed with some percentage of
server responses (i.e. as part of the HTTP header). The
client then chooses a server based on distance from the
client, biased by server load. The influence of load informa-
tion is decayed as the information becomes stale, with the
fallback to random load balancing in the case where load
information is stale and all other considerations are equal.
Thus, clients actively interacting with a service can use cur-
rent information to make load balancing decisions, while
inactive clients must initially use only static information.

As described, the Smart Client architecture provides a
portable mechanism for fault tolerant and load balanced ac-
cess to Web services. However, in a naive implementation,
Java code must be retrieved each time a particular service is



accessed, effectively doubling latency for small requests. In
our implementation of Smart Clients, service-specific Java
code is retrieved the first time a service is accessed and
cached to disk using Java object serialization.

4 Persistent Shared State

WebOS seeks to raise the level of abstraction for large-
scale distributed programs that manipulate shared state. To-
day, many such applications share state and transfer con-
trol using a network communication abstraction that rele-
gates caching, cache consistency, security, transactional up-
dates, and location-independence to application program-
mers. Following the analogy that it is often simpler to pro-
gram parallel applications using shared memory as opposed
to message passing, we contend that a global cache coherent
file system abstraction will simplify the implementation of
many applications. For example, the caching, cache con-
sistency, and security provided by our prototype system,
WebFS, greatly simplified the implementation of the Inter-
net chat, remote compute engine, and Rent-A-Server appli-
cations described later in this paper.

Providing these abstractions to diverse applications in a
wide-area network is challenging. For example, some ap-
plications, such as our remote compute engine and Rent-A-
Server, require strong cache consistency while other appli-
cations, such as an Internet news service, may prefer weaker
consistency to reduce overhead or to ensure that network
failures do not delay updates. Therefore, a focus of our
design is to provide flexibility so that demanding applica-
tions can control details of how key abstractions are imple-
mented. We believe this approach is crucial for an Internet
file system both because different applications have differ-
ent demands and because the Internet's scale, limited per-
formance, and unreliability can make it expensive to pro-
vide stronger guarantees than applications strictly require.
WebFS associates a list of user-extensible properties with
each file to extend basic properties such as owner and per-
missions, cache consistency policy, prefetching and cache
replacement policy, and encryption policy. These proper-
ties are set and accessed through the UNIXioctl system
call.

Currently, WebFS implements the last writer wins [21]
cache consistency protocol to support traditional file ac-
cess as well as an IP multicast-based [11] update/invalidate
protocol for widely-shared, frequently updated data files.
Once IP multicast becomes widely deployed, its use will
increase the efficiency of popular “Internet push” applica-
tions [32]. We believe that providing IP multicast support
at the file system interface will simplify the development
of these applications. To demonstrate this point, we have
implemented a stock ticker application that regularly dis-
tributes (through multicast file writes) updated stock prices

to interested clients performing blocking read operations.
In addition to last-writer wins and IP multicast updates, we
are in the process of extending WebFS to support optimistic
re-integration [25] to deal with the disconnected operation
endemic to today's Internet.

The WebFS prototype provides caching, cache consis-
tency, and access-control. We implemented it as a dynam-
ically loadable Solaris file system extension interfacing at
the vnode layer [26]. The vnode layer makes upcalls to a
user level WebFS daemon for file accesses not cached in
virtual memory. WebFS uses a URL-based name space, and
the WebFS daemon uses HTTP for access to standard Web
sites. Thus, WebFS allows unmodified UNIX programs to
take URL's (and URL's in a pathname syntax) in place of
conventional file names (e.g.,ls /http/www-c.mcs.
anl.gov/hpdc7/ ). We chose to use URL's as the global
namespace and HTTP for transport because of its wide de-
ployment and our desire to provide backward compatibility
with existing distributed applications. Since it is preferable
to export a namespace with location independent names, we
are currently investigating combining Smart Proxies with
WebFS to provide URN [36] support for WebFS file names.
Additionally, if the server site is also running WebFS, then
authenticated read/write access and cache consistency are
enabled through our own custom extensions to HTTP.

WebFS has been in day to day use for approximately
one year by twenty users at the authors' site. It is publi-
cally available for download and has been successfully in-
stalled by a number of users un-affiliated with the authors.
The performance of remote file access is highly dependent
upon the network connection to the remote site. The cost of
the network connection and subsequent transfer dominates
the added overhead of making an upcall to the user-level.
Once transferred through the network, file pages are cached
in the kernel file cache. Thus, once a file has been trans-
ferred from a remote site, the performance of cached access
through WebFS versus cached access through NFS [46] is
virtually identical.

5 Security and Authentication

Applications operating across the wide area are suscep-
tible to a variety of potential attacks by sophisticated adver-
saries. To motivate the need for a wide-area security system,
consider the simple example of a user wishing to run a sim-
ulation. Typically, if the simulation were executed locally,
the program would run with all the user's privileges. When
running the same simulation remotely, however, it is neces-
sary to assign to the program the least set of privileges nec-
essary to complete its task (e.g., read access to an input file
and write access to an output file). This confinement of priv-
ileges protects users if the remote machine is compromised;
while the simulation data may be usurped, the user's iden-



tity and other private files will hopefully remain secure. To
provide this level of protection, a wide-area security system
must provide fine-grained transfer of rights between prin-
cipals in different administrative domains. The goal of our
security abstraction is to transparently enable such rights
transfer. CRISIS, the security system of WebOS, is de-
scribed in another publication [4]; we present an overview
here.

5.1 Validating and Revoking Statements

A principal contribution of CRISIS is the introduction of
transfer certificates, lightweight and revocable capabilities
used to support the fine-grained transfer of rights. Transfer
certificates are signed statements granting a subset of the
signing principal's privileges to a target principal. Trans-
fer certificates can be chained together for recursive trans-
fer of privileges. The entire chain of transfers is presented
to reference monitors for validation, allowing for confine-
ment of rights (e.g., a reference monitor can reject access if
any principal in a chain of transfers is not trusted). Trans-
fer certificates form the basis of wide-area rights transfer in
WebOS, supporting operations such as delegation, privilege
confinement, and the creation of roles (as described below).

All CRISIS certificates must be signed and counter-
signed by authorities trusted by both endpoints of a com-
munication channel. A Certification Authority (CA) gener-
atesIdentity Certificates, mapping public keys to principals.
In CRISIS, CA's sign all identity certificates with a long
timeout (usually weeks) and identify a locally trusted on-
line agent (OLA) that is responsible for counter-signing the
identity certificate and all transfer certificates originating
with that principal. The endorsement period of the counter-
signature is application-specific, but typically on the order
of hours. Redundancy employed in this fashion offers a
number of advantages: (i) to successfully steal keys, either
both the OLA and CA must be subverted or the CA must
be subverted undetected, (ii) the CA is usually left off-line
since certificates are signed with long timeouts, increasing
system security since an off-line entity is more difficult to
attack, (iii) a malicious CA is unable to revoke a user's key,
issue a new identity certificate, and masquerade as the user
without colluding with the OLA [9], and (iv) system per-
formance is improved because certificates can be cached
for the timeout of the counter-signature, removing the need
for synchronous three-way communication in the common
case.

Transfer certificates can be revoked modulo a timeout.
Revocation is used not only for exceptional events such as
stolen keys, but also applies to common operations such as
revoking the rights of a remote job upon its completion or
revoking the rights of a login session upon user logout.To
revoke a particular privilege, the OLA that endorses the

certificate must be informed that the certificate should no
longer be endorsed. Once the timeout period for the en-
dorsed certificate expires, the rights described by the cer-
tificate are effectively revoked because the OLA will refuse
re-endorsement for that certificate.

5.2 Processes and Roles

Given the ability to authenticate principals, CRISIS also
requires a mechanism for associating privileges with run-
ning processes. Each CRISIS node runs a security man-
ager responsible for mediating access to local resources and
for mapping privileges tosecurity domains. In CRISIS, all
programs execute in the context of a security domain. For
example, a login session creates a new security domain pos-
sessing the privileges of the principal who successfully re-
quested login. A security domain, at minimum, is associ-
ated with a transfer certificate from a principal to the local
node allowing the node to act on the principal's behalf for
some subset of the principal's privileges. Restricting the
rights available to a process is further detailed in Section 6.

In the wide area, it is vital for principals to restrict the
rights they cede to their jobs. For example, when logging
into a machine, a principal implicitly authorizes the ma-
chine and the local OS to speak for the principal for the du-
ration of the login session. It is often convenient to associate
names with a specific subset of a principal's privileges. This
functionality is achieved in CRISIS through namedroles. A
principal (user) creates a new role by generating an identity
certificate containing a new public/private key pair and a
transfer certificate that describes a subset of the principal's
rights that are transferred to that role; an OLA chosen by the
principal is responsible for endorsing the certificates. Thus,
in creating new roles, principals act as their own certifica-
tion authority [33]. The principal stores the role identity
certificate and role transfer certificate in apurseof certifi-
cates that contains all roles associated with the principal.

5.3 Authorization

Once a request has been securely transmitted across the
wide area, and properly authenticated, the remaining task
is authorization, determining whether the principal mak-
ing the request should be granted access. CRISIS employs
Access Control Lists (ACLs) to describe the principals and
groups privileged to access particular resources. File ACLs
contain lists of principals authorized for read, write, or exe-
cute access to a particular file. Process execution ACLs are
a simple list describing all principals permitted to run jobs
on a given node.

To determine whether a request for a particular operation
should be authorized, a reference monitor first verifies that
all certificates are un-expired and signed by a public key



with a current endorsement from a trusted CA and OLA. In
doing so, the reference monitor checks for a path of trust be-
tween its home domain and the domains of all signing prin-
cipals. The reference monitor then reduces all certificates
to the identity of single principals. For transfer certificates,
this is accomplished by working back through a chain of
transfers to the original granting principal. Finally, the ref-
erence monitor checks the reduced list of principals against
the contents of the object's ACL, granting authorization if a
match is found.

6 Process Control

To simplify development of wide-area applications,
WebOS makes execution of processes on remote nodes as
simple as forking a process on the local processor. As with
the local case, the WebOS process control model addresses
issues with safety and fairness. On local machines, safety
is provided by execution in a separate address space, while
fair allocation of resources is accomplished through local
operating system scheduling mechanisms.

A resource manageron each WebOS machine is respon-
sible for job requests from remote sites. Before executing
any job, the resource manager authenticates the remote prin-
cipal's identity and determines if the proper access rights
are held. To maintain local system integrity and to ensure
that running processes do not interfere with one another, the
resource manager creates avirtual machinefor process ex-
ecution. These virtual machines interact with the CRISIS
security system to enforce rights restriction associated with
different security domains. Thus, processes will be granted
variable access to local resources through the virtual ma-
chine depending on the privileges of the user originally re-
sponsible for creating the process.

We use Janus [18] to create such a virtual machine. Pro-
cesses in the virtual machine execute with limited privi-
leges, preventing them from interfering with the operation
of processes in other virtual machines. Janus uses the So-
laris /proc file system to intercept the subset of system
calls that could potentially violate system integrity, forcing
failure if a dangerous operation is attempted. A Janus con-
figuration script determines access rights to the local file
system, network, and devices. These configuration scripts
are set by the local system administrator on a per-principal
basis.

WebOS also uses the virtual machine abstraction as the
basis for local resource allocation. On startup, a process's
runtime priority is set using the System Vpriocntl sys-
tem call, andsetrlimit is used to set the maximum
amount of memory and maximum CPU usage. In the future,
we hope to integrate more robust policies allowing fine-
grained control over allocation, allowing WebOS to provide
quality of service guarantees. For example, techniques such

as reverse lotteries [45] might be used to more flexibly allo-
cate physical memory pages.

7 WebOS Applications

This section provides an overview of four applications
designed using the WebOS framework. The first two ap-
plications have been completed, while the last two are un-
der development. In the next section, we describe in detail
the design and performance of a fifth application, Rent-A-
Server.

7.1 Internet Chat

Internet chat allows for individuals to enter and leave
chat rooms to converse with others present in the same log-
ical room. In our implementation, chat rooms are imple-
mented as WebFS files accessed by Smart Clients. The
file system interface is well-matched to chat semantics in
a number of ways: (i) file appends and reads abstract away
the need to send messages (ii) the chat file provides a per-
sistent log of chat activity, and (iii) access control lists al-
low for private and secure (through WebFS encryption) chat
rooms. For scalability, we allow multiple WebFS servers to
handle client requests for a single file (room). Each WebFS
server accumulates updates, and periodically propagates the
updates to other servers in the WebFS group, who in turn
transmit the updates to local clients. Smart Clients choose
the least loaded WebFS server for load balancing and con-
nect to alternative servers on host failure or network parti-
tion for fault transparency.

To quantify the benefits available from the WebOS
framework, we implemented two versions of chat with iden-
tical semantics, both with and without WebOS. The initial
implementation consisted of 1200 lines of Java code in the
client and 4200 lines of C++ code in the server. By using
WebFS to handle message transmission, failure detection,
and storage, the size of the chat client code was reduced
to 850 lines, while the WebFS interface entirely replaced
the 4200 lines of chat server code. The main reason for
this savings in complexity was the replacement of separate
code for managing communication and persistent storage
of chat room contents with a single globally accessible and
consistent file. As an added benefit, this common WebFS
interface is similarly available for other distributed applica-
tions. For example, we are currently implementing a shared
distributed whiteboard application using this interface.

7.2 Remote Compute Engine

Sites with unique computing resources, such as super-
computer centers, often wish to make their resources avail-
able over the Internet. Using WebOS, we allow remote pro-



grams to be invoked in the same way as local programs
and can allow access to the same files as local programs.
WebOS functionality is used to address a number of is-
sues associated with such access: the identity of requesting
agents is authenticated, programs are provided secure ac-
cess to private files on both local and remote systems, and
programs run in a restricted virtual machine isolated from
other programs to protect the local system from malicious
users. At our site, WebOS provides compute access to a re-
search cluster of 100 machines. Resource allocation within
the virtual machine allows external users to take advantage
of the aggregate computing resources, while ensuring sys-
tem developers have the requisite priority.

7.3 Wide Area Cooperative Cache

We are using WebOS to build a geographically dis-
tributed Web cooperative cache [10] to both validate our
design and to provide an immediate benefit to the Internet
by doing more intelligent caching of Web content. Existing
proposals for hierarchical caching of the Web suffer from
an inability to dramatically grow the cache size and pro-
cessing power at each level of the hierarchy [7]. With coop-
erative caching among peer servers, the aggregate capacity
grows dramatically with the distance from the client. Thus,
while caches above the first level in existing hierarchical
designs have very low hit rates and simply increase the la-
tency to end clients, a cooperative cache is more likely to
successfully retrieve a cached copy from a peer. We plan to
explore tradeoffs associated with maintaining directories of
peer cache contents [2, 13], hints [35], or using simple IP
multicasts or broadcasts.

WebOS simplifies the implementation of the cooperative
cache in a number of ways. First, Smart Clients are used to
determine the appropriate proxy cache to contact. WebFS
is used to transport cache files among the proxies and to se-
curely share any necessary (private) state among the prox-
ies. Finally, the authentication model allows proxies to val-
idate their identities both to one another and to the client.

7.4 Internet Weather

A number of sites are currently attempting to provide
regular updates of congestion, latency, and partitions in the
Internet [28, 22, 47]. Such information is invaluable for
services making placement and load balancing decisions.
However, all current efforts take network measurements
from a centralized site, making it difficult to measure net-
work characteristics between two arbitrary sites. We are
addressing this limitation by using the WebOS framework
to generate more comprehensive snapshots of Internet con-
ditions. In our implementation, a centralized server pro-
vides Smart Client applets for those wishing to view the

current Internet weather. In exchange for the weather re-
port, the user implicitly agrees to allow the applet to exe-
cute traceroute to a subset of server-determined sites
and to transmit the result back to the server. Using these
results from multiple sites, the service is able to construct
fairly comprehensive snapshots of Internet weather.

8 Rent-A-Server

This section describes the design, implementation, and
performance of Rent-A-Server, a general model for grace-
ful scaling across temporal and geographic spikes in client
demand for a particular service. Our particular implementa-
tion focuses on Web service, and enables overloaded HTTP
servers to shed load onto idle third-party servers calledsur-
rogatesthat use the WebOS framework to coherently cache
data from the primary server. The surrogate is able to satisfy
the same HTTP requests as the original server, including
requests for both static and dynamically generated objects
(e.g. data pages and CGI script results). The goal of the im-
plementation of Rent-A-Server is to demonstrate the power
of using a unified system interface to wide-area resources
and of moving a service out across the Internet.

8.1 Current Approaches

Current efforts to distribute HTTP server load focus on
either distributing load across a fixed set of machines main-
tained by the owner of the data or distributing data across
(proxy) caches under client (not server) control. Many
HTTP server implementations achieve scalability by repli-
cating their data across a fixed set of servers at a single site
and then using the Domain Name Service (DNS) to ran-
domly distribute requests across the servers [23]. Unfortu-
nately, this approach requires that each site purchase enough
computing power and network bandwidth to satisfy peak
demand.

Mirror sites are also used to improve locality and to dis-
tribute load, but this manual approach requires more effort
to set up the mirrors and to maintain data consistency across
the mirrors. Further, users must specify which mirror to use,
which is both inconvenient and unlikely to yield a balanced
load across sites. Finally, as with the approach of running
multiple servers at one site, mirror sites are allocated stati-
cally. The system must always maintain enough mirrors to
deal with its peak loads, and the location of mirrors cannot
be shifted to address shifts in geographic hotspots.

Another approach to distributing load, caching proxies,
is used to reduce server load and to improve network local-
ity. To use a proxy, groups of clients send all of their re-
quests to their proxy machine. The proxy machine attempts
to satisfy the requests from its local cache, sending the re-
quests to the remote server if the cache cannot supply the



Figure 2. Rent-A-Server Architecture. HTTP servers
periodically send load information to a load daemon.
In response to an update, the load daemon transmits
the state of all servers. In turn, the HTTP servers
transmit this state information as part of the HTTP
header to Smart Clients. The Smart Clients can use
this information to determine which server to contact
for its next request. When the load daemon notices
that the service as a whole is becoming overloaded, it
contacts the resource manager on an available sur-
rogate to create another server replica. WebFS is
used to securely transmit any executables or data files
needed to start the server.

data. If proxies satisfy many requests to the server through
their caches, both server load and network congestion are
reduced.

However, proxies are conceptually agents of Web clients
rather than of Web servers. Thus, in some instances they
provide a poor match to the requirements of overloaded
services. First, proxy servers cache only data pages. A
proxy must send all requests for CGI scripts to the original
server (another paper [42] describes our approach for relax-
ing this limitation). Second, because servers regard proxies
as ordinary clients, the proxy can supply stale data to its
clients because of the limitations of HTTP cache consis-
tency protocols. As an example of the importance of having
server-controlled rather than client-controlled load distribu-
tion, some sites have recently asserted that proxy caches vi-
olate copyright laws by storing site content [27]. In effect,
the proxies are reducing generated advertising revenues by
hiding page access counts.

8.2 System Design

In this subsection, we demonstrate how WebOS services
simplify the implementation of this application. The archi-
tecture of the Rent-A-Server is described in Figure 2. Smart
Clients are used for load balanced access to HTTP services.
Periodically (currently every tenth response), servers piggy-
back service state information to Smart Clients in the HTTP
reply header. This state information includes a list of all
servers currently providing the service. The following infor-
mation is included for each server: its geographic location,
an estimate of its processing power, an estimate of current
load, and a time period during which the server is guaran-
teed to be active.

Each Rent-A-Server maintains information about client
geographic locations (location is sent by Smart Clients as
part of the HTTP request) and its own load information
in the form of requests per second and bytes transmitted
per second. Each Rent-A-Server periodically transmits this
state information to a centralizedload daemon. The load
daemon is currently a separate process, however its func-
tionality could be rolled into an elected member of the
server group. The load daemon is responsible for determin-
ing the need to spawn or to tear down Rent-A-Servers based
on current load information and client access patterns. It
also transmits server group state (e.g. membership and load
information) to each member of the server group, which is
in turn piggy-backed by the servers to Smart Clients as part
of HTTP replies, as described above.

Once the load daemon determines the need to spawn an
additional server, it first determines a location for the new
Rent-A-Server. The new server should be located close to
any hotspots in client access patterns to both conserve band-
width and to minimize client latency (this policy has not yet
been implemented). Once the target machine is selected,
the load daemon establishes an SSL channel with the sur-
rogate's resource manager. The load daemon then creates
transfer certificates for the surrogate to access the WebFS
files containing the executables (e.g. HTTP server) or inter-
nal service state (e.g. CGI scripts or internal database).

When setup negotiation is completed, the surrogate site
builds a Janus virtual machine to execute the necessary pro-
grams (in our case an arbitrary HTTP server) to establish a
service identity at the surrogate. The virtual machine en-
sures that the surrogate's system integrity is not violated by
a buggy executable or a malicious server. Both the service
executable and any necessary service state are securely ac-
cessed and cached on demand through WebFS. The load
daemon propagates the identity of the new surrogate to
other members of the server group, which in turn transmit
the identity and location of the new server to Smart Clients.
Tear down of a surrogate is accomplished when client de-
mand subsides and the load daemon decides not to renew



19 hops, 490 ms

15 hops, 22 ms

25 hops, 187 ms

Figure 3. Rent-A-Server experimental setup. Clients
at Seattle, Berkeley, and Austin act as clients of a
service. For fixed server measurements, only a sin-
gle server exists at the Seattle site. For Rent-A-
Server measurements, the system begins with the sin-
gle Seattle server, but additional servers are spawned
at Berkeley and Austin in response to client load.

leases with a surrogate. The load daemon removes the sur-
rogate from the appropriate ACL's.

8.3 Performance

To demonstrate the power of dynamic resource recruit-
ment available from our approach, we measure the perfor-
mance of Rent-A-Server when placed under a heavy syn-
thetic load. While our measurements are preliminary and
the system is not ready for production deployment, the mea-
surements in this section suggest that further refinement of
this model can potentially lead to improved wide-area Web
service. Our experiments are conducted across the wide
area as depicted in Figure 3. Eight sun Ultra workstations
at each of Seattle, Berkeley, and Austin acting as clients of
a Web service. Each client continuously requests the same
1 KB HTML file. Initially, there is a single HTTP server lo-
cated in Seattle running Apache 1.2b6 on a Sun Ultra work-
station. As described below, two surrogate Sun Ultra's are
available at Berkeley and Austin to demonstrate the utility
of Rent-A-Server. All the machines run Solaris 2.5.1.

Figure 3 also depicts the relative connectivity of the three
sites, as measured bytraceroute andping on a week-
end night. The reported numbers demonstrate best-case
connectivity information. As shown in the figure, connec-
tivity between Berkeley and Seattle is quite good, with only
22 ms round trip latencies reported by ping. Packets trav-
eling from Berkeley to Austin have 187 ms latency, with
approximately 2% of the packets dropped. Connectivity be-
tween Seattle and Austin is quite poor, with 490 ms latency

and 20% of packets dropped.
During the experiment, each client machine starts 8

Smart Client processes that continuously retrieve copies of
the same 1 KB HTML file. The results of our tests are
summarized in Figure 4. The graphs plot average client-
perceived latency in seconds as a function of elapsed time,
also in seconds. Figure 4(a) shows performance for the case
where only a single server is available in Seattle. The graph
shows that performance for clients at Berkeley and Seat-
tle is quite poor, averaging approximately 3 seconds to re-
trieve the 1 KB HTML file from the Seattle server. Clients
at Austin suffer from even worse performance, widely vary-
ing in average latency between 4 and 10 seconds. The poor
performance of the Berkeley and Seattle results from an
overloading of the single HTTP server in Seattle. The per-
formance for the Austin clients relative to the Berkeley and
Seattle clients is explained by the poor network connectivity
between Austin and the HTTP server located in Seattle.

Figure 4(b) shows the improved performance available
from using Rent-A-Server. In this case, approximately 90
seconds into the experiment, Rent-A-Server's load daemon
spawns off an additional server at Berkeley. At this point,
latency for both the Berkeley and Seattle improves into the
.75 second latency range. Latency for the Texas clients
is still poor because of the poor network connectivity be-
tween Texas and both Seattle and Berkeley. Thus, 200 sec-
onds into the experiment a third server is spawned at Texas,
with a corresponding improvement in latency for the Texas
clients. What is not shown on this graph is the correspond-
ing savings in wide-area bandwidth as clients at Berkeley
and Seattle fall back to local servers as opposed to travers-
ing wide-area links to reach the Seattle server.

The performance of Rent-A-Server demonstrates the
power of dynamically recruiting resources for wide-area
services. However, it is equally important to provide a con-
venient interface for application development. Our imple-
mentation of Rent-A-Server in WebOS consists solely of
the load daemon and additions to the Apache HTTP server
to transmit state information to the load daemon and to
transmit aggregate service state (in HTTP headers) to Smart
Clients. The load daemon consists of 1000 lines of C++
code, and we added 150 lines of C code to Apache. Begin-
ning with the WebOS framework, our prototype of Rent-A-
Server was operational in less than one week.

9 Related Work

A number of recent efforts exploit computational re-
sources available on the Internet for wide-area parallel pro-
gramming, including Wax [38], Legion [20], Atlas [3],
Globus [14], Globe [44], and NetSolve [5]. A detailed
comparison with the abstractions presented here and these
projects is beyond the scope of this paper. However, WebOS



0

2

4

6

8

10

0 50 100 150 200 250 300 350

Time (s)

La
te

nc
y (s

) Seattle

Berkeley

Austin

0

2

4

6

8

10

0 50 100 150 200 250 300 350

Time (s)

R
es

po
ns

e T
im

e (s
)

Seattle

Berkeley

Austin
Berkeley
Startup

Texas
Startup

(a) Fixed Server (b) Rent-A-Server

Figure 4. Rent-A-Server Performance. The graphs plot average client latency as a function of time for the operation
of retrieving a 1 KB HTML file over HTTP. Each line represents average latency sampled in 5 second intervals for
clients located in Seattle, Berkeley, and Austin. In the Fixed Server graph, a single server in Seattle serves all pages.
In the Rent-A-Server graph, a single server is initially available, but the system is able to spawn additional servers at
Berkeley and Austin to improve client latency and reduce consumed wide-area bandwidth.

shares a need for similar underlying technology with these
systems (such as the need for a global name space and file
system). However, these systems focus on a programming
model for computing across the wide area, while our work
focuses on system level support for building and running
wide-area applications.

Our work draws upon a large body of previous work
in file systems exporting a global namespace, including
AFS [21], Alex [6], Coda [25], Bayou [41], WebNFS [39],
and UFO [1]. The main differentiating point between
WebFS and these earlier works is backward compatibility
with the HTTP name space and a security model appropri-
ate for wide-area access. We plan to build on the work done
in Coda and Bayou to address issues of replication and fault
tolerance in the wide area. Kermarrec et. al [24] propose a
framework for supporting flexible cache consistency that is
similar to the model we advocate.

Harvest [7], Squid [37], and other Web caching efforts
have focused on methods of extending the client cache
across the Internet to caching proxies. Caching proxies in
general are limited by a number of ways. Proxies are unable
to produce dynamic Web content (i.e. the results of cgi-bin
programs). Further, proxies are logical extensions of the
client making it difficult for service providers to track such
things as hit counts. Rent-A-Server addresses the limita-
tions of proxy caching mechanisms by allowing full replica-
tion of overloaded services at locations determined by client
access patterns.

The V kernel [8] uses multicast for client communication

to multiple members of a server group for load balancing
and fault tolerance. This mechanism is related to our use of
Smart Clients for extending service functionality onto the
client. However, Smart Clients allow service-specific nam-
ing and load balancing algorithms. For example, the quality
of the network fabric is non-uniform in the wide area, mak-
ing it important to distinguish sites based on the client's la-
tency to each of the sites.

The Active Networks proposal is to modify Internet
routers to be dynamically programmable, either at the con-
nection or packet level [40]. The goal is to make it easier
to extend network protocols to provide new services, such
as minimizing network bandwidth consumed by multicast
video streams. As in our work, a major motivation is to
move computation into the Internet to minimize network
latency and congestion. WebOS can be seen as a logical
extension of Active Networks, where the active computing
elements in the Internet can be servers in addition to the
individual processors inside of routers operating on packet
streams.

10 Conclusions

In this paper, we demonstrate the synergy available
from exporting traditional operating system functionality
to wide-area applications. Our prototype implementation,
WebOS, describes one possible organization of these sys-
tem services. In this framework, we make the following
contributions. First, we show that extending server func-



tionality onto client machines allows for more flexible im-
plementation of name resolution, load balancing, and fault
tolerance. Second, by providing a file system abstrac-
tion combining communication and persistence, we sim-
plify the implementation of a number of wide-area applica-
tions. Next, we present a security system enabling the fine-
grained transfer of rights across the wide area. To demon-
strate the utility of these combined abstractions, we describe
the implementation of a number of wide-area applications,
including Rent-A-Server, an HTTP server capable of dy-
namically replicating itself across the Internet for both im-
proved client latency and more efficient utilization of wide-
area link bandwidth.

Acknowledgments

Both the content and presentation of this paper has
greatly benefited from many discussions with members of
the UC Berkeley NOW project. In addition, we would
like to specifically thank Eric Anderson, Remzi Arpaci-
Dusseau, Doug Ghormley, Ken Goldberg, Steve Lumetta,
Steve McCanne, John Ousterhout, Dave Patterson, and
Marvin Theimer for their feedback on the ideas presented
in this paper.

References

[1] A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J.
Scheiman. Ufo: A Personal Global File System Based on
User-Level Extensions to the Operating System. InProceed-
ings of the 1997 USENIX Technical Conference, Anaheim,
CA, January 1997.

[2] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patter-
son, D. S. Roselli, and R. Y. Wang. Serverless Network File
Systems. InProceedings of the 15th ACM Symposium on
Operating Systems Principles, pages 109–126, Dec. 1995.

[3] E. Baldeschwieler, R. Blumofe, and E. Brewer. Atlas: An
Infrastructure for Global Computing. InProc. of the Sev-
enth ACM SIGOPS European Workshop: Systems Support
for Worldwide Applcations, September 1996.

[4] E. Belani, A. Vahdat, T. Anderson, and M. Dahlin. The CRI-
SIS Wide Area Security Architecture. InProceedings of the
USENIX Security Symposium, San Antonio, Texas, January
1998.

[5] H. Casanova and J. Dongarra. NetSolve: A Network Server
for Solving Computational Science Problems. InProceed-
ings of Supercomputing '96, November 1996.

[6] V. Cate. Alex – a Global Filesystem. InProceedings of
the 1992 USENIX File System Workshop, pages 1–12, May
1992.

[7] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz,
and K. Worrell. A Hierarchical Internet Object Cache. In
Proceedings of the 1996 USENIX Technical Conference, Jan.
1996.

[8] D. R. Cheriton. The V Distributed System. InCommunica-
tions of the ACM, pages 314–333, Mar. 1988.

[9] B. Crispo and M. Lomas. A Certification Scheme for Elec-
tronic Commerce. InSecurity Protocols International Work-
shop, pages 19–32, Cambridge UK, April 1996. Springer-
Verlag LNCS series vol. 1189.

[10] M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Coop-
erative Caching: Using Remote Client Memory to Improve
File System Performance. InProceedings of the 1st USENIX
Symposium on Operating Systems Design and Implementa-
tion, pages 267–280, November 14–17 1994.

[11] S. E. Deering. Multicast Routing in a Datagram Internet-
work. PhD thesis, Stanford University, Dec. 1991.

[12] Digital Equipment Corporation.Alta Vista, 1995. http:
//www.altavista.digital.com/ .

[13] M. M. Feeley, W. E. Morgan, F. H. Pighin, A. R. Karlin,
H. M. Levy, and C. A. Thekkath. Implementing Global
Memory Management in a Workstation Cluster. InPro-
ceedings of the 15th ACM Symposium on Operating Systems
Principles, December 1995.

[14] I. Foster and C. Kesselman. Globus: A Metacomputing In-
frastructure Toolkit. InProc. Workshop on Environments and
Tools, 1996.

[15] A. Fox, S. Gribble, E. Brewer, and E. Amir. Adapting to Net-
work and Client Variability via On-Demand Dynamic Distil-
lation. In Proceedings of the Seventh International Confer-
ence on Archictectural Support for Programming Languages
and Operating Systems, Cambridge, MA, 1996.

[16] A. Fox, S. Gribble, Y. Chawathe, and E. Brewer. Cluster-
Based Scalable Network Services. InProceedings of the 16th
ACM Symposium on Operating Systems Principles, Saintt-
Malo, France, October 1997.

[17] A. Freier, P. Karlton, and P. Kocher.Secure Socket Layer.
Netscape, Mar. 1996.

[18] I. Goldberg, D. Wagner, R. Thomas, and E. Brewer. A Secure
Environment for Untrusted Helper Applications. InProceed-
ings of the Sixth USENIX Security Symposium, July 1996.

[19] J. Gosling and H. McGilton. The Java(tm) Language Envi-
ronment: A White Paper.http://java.dimensionx.
com/whitePaper/java-whitepaper-1.html ,
1995.

[20] A. Grimshaw, A. Nguyen-Tuong, and W. Wulf. Campus-
Wide Computing: Results Using Legion at the University of
Virginia. Technical Report CS-95-19, University of Virginia,
March 1995.

[21] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and Perfor-
mance in a Distributed File System.ACM Trans. Comput.
Syst., 6(1):51–82, Feb. 1988.

[22] Internet Weather Report, 1997. http://www.
internetweather.com/ .

[23] E. D. Katz, M. Butler, and R. McGrath. A Scalable HTTP
Server: The NCSA Prototype. InFirst International Confer-
ence on the World-Wide Web, Apr. 1994.

[24] A.-M. Kermarrec, I. Kuz, M. van Steen, , and A. S. Tanen-
baum. A Framework for Consistent, Replicated Web Ob-
jects. InProceedings of the 18th International Conference
on Distributed Computing Systems, May 1998.

[25] J. J. Kistler and M. Satyanarayanan. Disconnected Operation
in the Coda File System.ACM Transactions on Computer
Systems, 10(1):3–25, Feb. 1992.

[26] S. R. Kleiman. Vnodes: An Architecture For Multiple
File System Types in SUN UNIX. InProceedings of the



1986 USENIX Summer Technical Conference, pages 238–
247, 1986.

[27] A. Luotonen and K. Atlis. World-Wide Web Proxies. In
First International Conference on the World-Wide Web, Apr.
1994.

[28] Matrix Information and Directory Services, Inc.MIDS In-
ternet Weather Report, 1996. See http://www2.mids.org/-
weather/index.html.

[29] M. Mitzenmacher.The Power of Two Choices in Random-
ized Load Balancing. PhD thesis, University of California,
Berkeley, 1996.

[30] M. Nelson, B. Welch, and J. Ousterhout. Caching in the
Sprite Network File System.ACM Transactions on Com-
puter Systems, 6(1):134–154, Feb. 1988.

[31] Netscape Communications Corporation.Netscape Naviga-
tor, 1994. http://www.netscape.com.

[32] PointCast.The PointCast Network, 1996. http://www.
pointcast.com .

[33] R. L. Rivest and B. Lampson. SDSI–A Simple Distributed
Security Infrastructure. http://theory.lcs.mit.
edu/� cis/sdsi.html , 1996.

[34] A. Rutkowski. Testimony Before the U.S. House of Repre-
sentatives Committee on Science. Available ashttp://
www.isoc.org/rutkowski/ht_hearing_html ,
July 26 1995.

[35] P. Sarkar and J. Hartman. Efficient cooperative cachingus-
ing hints. InOperating Systems Design and Implementation,
pages 35–46, October 1996.

[36] K. Sollins and L. Masinter. Functional Requirements for
Uniform Resource Names. RFC 1737, December 1994.

[37] Squid Internet Object Cache, 1996. http://squid.
nlanr.net/Squid/ .

[38] P. D. Stout. Wax: A Wide Area Computation System. PhD
thesis, Carnegie Mellon University, 1994. CMU-CS-94-230.

[39] WebNFS: The Filesystem for the World Wide Web. Tech-
nical report, Sun Microsystems, 1996. Seehttp://www.
sun.com/webnfs/wp-webnfs/ .

[40] D. Tennenhouse and D. Wetherall. Towards an Active Net-
work Architecture. InACM SIGCOMM Computer Commu-
nication Review, pages 5–18, Apr. 1996.

[41] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing Update Conflicts in
Bayou, a Weakly Connected Replicated Storage System. In
Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles, pages 172–183, Dec. 1995.

[42] A. Vahdat and T. Anderson. Transparent Result Caching.
In Proceedings of the 1998 USENIX Technical Conference,
New Orleans, Louisiana, June 1998.

[43] A. Vahdat, P. Eastham, and T. Anderson. WebFS: A Global
Cache Coherent File System. Seehttp://www.cs.
berkeley.edu/� vahdat/webfs/webfs.html ,
December 1996.

[44] M. van Steen, P. Homburg, and A. S. Tanenbaum. The Ar-
chitectural Design of Globe: A Wide-Area Distributed Sys-
tem. Technical Report Technical Report IR-422, Vrije Uni-
versiteit, March 1997.

[45] C. A. Waldspurger and W. E. Weihl. Lottery Scheduling:
Flexible Proportional-Share Resource Management. InOp-
erating Systems Design and Implementation, pages 1–11,
Novemeber 1994.

[46] D. Walsh, B. Lyon, G. Sager, J. M. Chang, D. Goldberg,
S. Kleiman, T. Lyon, R. Sandberg, and P. Weiss. Overview

of the Sun Network File System. InProceedings of the 1985
USENIX Winter Conference, pages 117–124, Jan. 1985.

[47] R. Wolski. Dynamically Forecasting Network Performance
to Support Dynamic Scheduling Using the Network Weather
Service. InProceedings of the 6th High-Performance Dis-
tributed Computing Conference, August 1997.

[48] C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Ander-
son, and D. Culler. Using Smart Clients to Build Scalable
Services. InProceedings of the USENIX Technical Confer-
ence, Jan. 1997.


