INFORMATION TO USERS

The most advanced technology has been used to photo-
graph and reproduce this manuscript from the microfilm
master. UMI films the original text directly from the copy
subraitted. Thus, some dissertation copies are in typewriter
face, while others may be from a computer printer.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these will
be noted. Also, if unauthorized copyrighted material had to
be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re-
produced by sectioning the original, beginning at the upper
left-hand corner and continuing from left to right in equal
sections with small overlaps. Each oversize page is available
as one exposure on a standard 35 mm slide or as a 17" x 23"
black and white photographic print for an additional charge.

Photographs included in the original manuscript have been
reproduced xerographically in this copy. 35 mm slides or
6" X 9" black and white photographic prints are available for
any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

EUMI

Accessing the World's Information since 1938

300 North Zeeb Road, Ann Arbor, M| 48106-1346 USA

Order Number 8728365

Shared virtual memory on loosely coupled multiprocessors

Li, Kai, Ph.D.

Yale University, 1986

Copyright ©1986 by Li, Kai. All rights reserved.

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

Shared Virtual Memory
on

Loosely Coupled Multiprocessors

A Dissertation
Presented to the Faculty of the Graduate School
of
Yale University
in Candidacy for the degreee of
Doctor of Philosophy

by
Kai Li
December;, 1986

©Copyright by Kai Li, 1986
ALL RIGHTS RESERVED

Abstract

Shared Virtual Memory
- on Loosely Coupled Multiprocessors

Kai Li
Yale University
1986

This dissertaticn demonstrates that paraliel programs using shared virtual
memory on loosely coupled muitiprocessors can achieve orders-of-magnitude
speedups over a uniprocessor and that it is practical to implement a shared
virtual memory on existing architectures. Virtual memory has proven benifits.
Today, almost every high performance sequential computer has one. While one
can easily imagine how virtual memory would be incorporated into a shared-
memory parallel machine, on a multiprocessor in which the physical memory is
distributed, the implementation of virtual meinory is not obvious.

This dissertation presents algorithms for solving memory coherence prob-
lems in a shared virtual memory on loosely coupled multiprocessors. It dis-
cusses basic mechanisms for process scheduling (including process migration)
and memory management. Many different strategies are presented, analyzed,
and compared, and a few of the most viable ones are chosen for implementation.

A prototype system, IVY, has been implemented on a local area network
of Apollo workstations. The experimental results show that parallel programs
using the shared virtual memory system yield almost linear and occasionally
super-linear speedups. The success of this implementation suggests that shared
virtual memory on loosely coupled multiprocessors can exploit the total pro-
cessing power and memory capabilities in a far more unified way than the
traditional “message-passing” approach.

Commendatory Poem by Dr. Otto C. Steinmayer

Ad amicum KAI LI, cum exercitationem academicam pro gradu
Doctoris Philosophiae, quam de

Aoyeopa mapaddjdwe conscripsit, manibus solvisset.

CAELI, mirabar quid secum machina volvat,

quoque modo arcanas paiticulas agitet

morsaque. Cogitat? estne memor tam dura silex? aut

segminis in textu mensque 2nimusque latent?

Quid non? Ingenia ast inter se ferrea nexis

praeceptum ut pariter multa sequantur idem.

Computus exiguo prius actus tempore simplex

arte tua paritur pluries in minimo!

Multijugus currus citius volat, et capita aiunt

quam solum melius plusque valere dua.

En, venit in lucem perfectus, docte, libellus;

laetor quod tandem laurea serta feras.

Perge, Syracosid! maius quid habens ratione;

scibilia astutus calculet omnia abax.2

Tractet plura licet mundi, carissime, harenis.

erga te meus est innumeralis amor.

LCf. Archimedes Arenarius

2Priscianus p.688

Acknowledgements

I would like to thank my advisors, Paul Hudak and Alan Perlis. Paul has
provided me with support, encouragement, advice, and freedom during my last
two years at Yale. His high standards of research and his scientific attitude
towards writing substantially improved this dissertation. Alan is an infinite
source of ideas. He taught me how to look into possibilities in research instead
of following the conventions of others. The other members of my committee,
Bill Gropp and Garret Swart, were also helpful. Bill answered innumerable
questions about scientific computing and suggested several parallel benchmark
programs. Garret read the thesis and corrected several mistakes.

I owe a great debt to my persevering counsellor and good friend John Ellis.
John convinced me of the possibilities of implementing the shared virtual mem-
ory when [first had the ideas in March 1984 and has continued to contribute
to the development of ideas since then. John read this thesis very carefully.
His comments significantly improved its range, accuracy, and conciseness.

Dennis Philbin read and edited the manuscript twice, which resulted in
countless improvements and clarifications.

Nat Mishkin showed me how to poke around the Apollo Aegis kernel, which
made my modifications to the OS possible. Discussions with Michael Fischer
helped me with the distributed manager algorithms in Chapter 2. Part of the
idea of distributing copy sets in Chapter 2 is the result of a discussion with Larry
Stewart. David Jefferson brought to my attention page table compactions and
memory replacement algorithms for large-scaled multiprocessors.

I thank my officemates Norman Adams from whom I learned many things
about the U.S. and about system programming, Richard Kelsey who wrote
my favorite game, Asteroids, and Jim Philbin who encouraged me many times
when I was depressed in debugging parallel programs. They gave me many
useful suggestions for this dissertation.

Michella Schubert, Chris Hatchell and Andrea Pappas took carz of many
details which complicate the life of the graduate student struggling with his
dissertaticn. Richard Guillemette and David Teodosio saved me from losing
my dissertation files when my disk crashed.

Otto Steinmayer contributed his poem for the dissertation.

Sally Mckee gave me her car and saved me from walking in snow at night
during my thesis writing.

My sincere thanks to my parents who supported me for many, many years.
I am privileged to be in the family. I dedicate this dissertation to them.

Contents

1 Shared Virtual Memory 1
11 Introduction............. E 1
1.2 Multiprocessors 2
1.3 Shared Memory vs. Message Passing 5
1.4 Shared Memory

on Loosely Coupled Multiprocessors 7
1.5 A Shared Virtual Memory System 8
1.6 Prototype and Experiments 12
17 Related Work 13
1.8 Organization of The Thesis 15

2 Memory Coherence 16
2.1 Memory Coherence Problem 17
2.2 Design Choices for Memory Coherence 18

221 Granularity 18
2.2.2 Memory Coherence Strategies 20
2.3 Communication Model and Cost Measurement 24
24 More about Invalidation 27
2.4.1 Invalidation and Synchronization 27
24.2 InvalidationMethods. 30
2.5 Centralized Manager Algorithms 32
2.5.1 A Monitor-like Centralized Manager Algorithm 32
2.5.2 An Improved Centralized Manager Algorithm 36
2.6 Distributed Manager Algorithms 39
2.6.1 A Fixed Distributed Manager Algorithm 39
2.6.2 A Broadcast Distributed Manager Algorithm 41
2.6.3 A Dynamic Distributed Manager Algorithm 43
2.6.4 An Improvement by Using Fewer Broadcasts 55

2.6.5 Distribution of Copy Sets 59

CONTENTS il

27 Conclusion 62
3 Process Management 64
31 ProcessControl 65
3.1.1 Processes, 65

3.1.2 Primitive Operations 67
3.1.3 Process Migration 69
3.1.4 Process Scheduling 71

3.2 Centralized Process 3cheduling 75
3.2.1 A Single Ready Queue Mechanism 75
3.2.2 A Multiple Ready Queue Mechanism 78

3.3 Distributed Process Scheduling 80
3.3.1 A Distributed Scheduling Mechanism 80
3.3.2 Active Load Balancing Strategy 83
3.3.3 Passive Load Balancing Strategy 84
3.3.4 Page-Demand Load Balancing Strategy 86

34 Conclusions 88
4 Implementation 89
4.1 Implementation Environment 89
4.1.1 Basic Requirements 89
4.1.2 Ideal Environment 90
4.1.3 Loosely coupled Multiprocessors 93
4.1.4 Communication Protocol 94

4.2 Shared Virtual Memory Mapping 98
4.2.1 ImplementationModes. 98
4.2.2 Multiple Address Spaces 100
4.2.3 Page Table Compaction 101
424 PageReplacement 109
4.2.5 Iniegration of Memory Coherence Algorithms 123

4.3 Process Management, 124
4.3.1 Process control primitives 124
4.3.2 Process Synchronization 125

4.4 Dynamic Memory Allocation 131
441 Boundary Tag 131
4.4.2 One-level Centralized Memory Management 134
4.4.3 Two-level Centralized Memory Management 135

4.5 Further Optimizations e e e e 139

CONTENTS

4.5.2 Preventing Thrashing
4.5.3 Indirect Memory Reference

46 Conclusions

5.1
5.2
5.3

5.4
5.5

5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5

IVY: A Prototype

Overview

5.3.2 Protocol Implementation
Shared Virtual Memory Mapping
Process Management
5.5.1 Processes and Process Scheduling
5.5.2 Process migration
5.5.3 Eventcount Implementation
Memory Allocation
Programming in IVY Environment
Experience
Remarks

Experiments

Applications e e e e e e e e e e e
Speedups
Memory coherence algorithms
Miss Ratios
Remarks

Final Thoughts

Generality
Parallel Programming Language
Granularity,

i

140
142
144

146
146
148
150
150
153
155
157
157
158
160
161
161
164
165

166
166
170
179
182
186

s
AN

Chapter 1

Shared Virtual Memory

Shared virtual memory on a loosely coupled multiprocessor can achieve orders-
of-magnitude speedups over a uniprocessor for many parallel programs, and it

is practical to implement such a memory on existing architectures.

1.1 Introduction

The benefits of a virtual memory go without saying; almost every high perfor-
mance sequential computer in existence today has one. In fact, it is hard to
believe that parallel architectures would not benefit from virtual memory. One
can easily imagine how virtual memory would be incorporated into a shared-
memory paralle]l machine, because the memory hierarchy need not be much
different from that of a sequential machine. On a multiprocessor in which the
physical memory is distributed, the implementation is not obvious. It is the
thesis of this dissertation that such an implementation is not only possible, it
is also desirable.

The shared virtual memory proposed here provides a virtual address space
that is shared among all processors in a loosely coupled multiprocessor system.
Application programs can use the shared virtual memory just as they do a

traditional virtual memory, except, of course, that processes can run on different

CHAPTER 1. SHARED VIRTUAL MEMORY 2

processors in parallel.

The shared virtual memory not only “pages” data between physical memo-
ries and disks, as in a conventional virtual memory system, but it also “pages”
data between the physical memories of the individual processors. Thus data can
naturally migrate between processors on demand. Also, just as a conventional
virtual memory swaps processes, so does the shared virtual memory. Thus the
shared virtual memory provides a natural and efficient form of process migration
between processors in a distributed system. This is quite a gain because proccss
migration is usually very difficult to implement. In effect, process migration
subsumes remote procedure calls.

This dissertation discusses design methods for implementing a shared virtual
memory system on loosely coupled multiprocessors; it also presents the results
of experiments run on the prototype system.

The prototype system, IVY has been implemented on a local area network of
Apollo workstations. The experimental results of non-trivial parallel programs
run on the prototype show the viability of a shared virtual memory. The success
of this implementaticn suggests an operating mode for such architecturcs in
which parallel programs can exploit the total processing power and memory
capabilitics in a far more unified way than the traditional “message-passing”

approach.

1.2 Multiprocessors

The terminology of parallel computing is not very precise, and it varies greatly
in the literature. The term multiprocessor sometimes refers to a number of
processors that communicate with each other but are not geographically dis-
tributed; other times its definition not only includes vector computers but also
includes geographically distributed computers. In this thesis, a multiprocessor
is simply defined as a computer architecture with the following two attributes:

¢ more than one processor (or processing element), and

CHAPTER 1. SHARED VIRTUAL MEMORY 3

¢ one or more communication links that allow data transfer between the
Processors.

According to Flynn’s classification of computer organizations [Flynn 66], this
definition includes all Multiple Instruction Multiple Data (MIMD) architectures
and those Single Instruction Multiple Data (SIMD) architectures having more
than one processor. Geographically distributed computers, such as a network
of computers, are included because they belong to the MIMD category.

Multiprocessors can be classified by their communication mechanisms and
memory configurations. Figure 1.1 provides a table of possible configurations
and examples of existing architectures that fit each configuration. The commu-
nication mechanisms are divided into two classes, tightly coupled and loosely
coupled. A multiprocessor is tightly coupled if a processor can reference the
memory of another processor by a single instruction. For example, a multi-
processor with a shared memory is tightly coupled. A multiprocessor is loosely
coupled if a processor requires interrupts rather than one instruction to make
a remote memory reference. In this case, the only way that one processor com-
municates with another is by sending packets of data via a communication link.

A local area network of computers falls into this category.

Memory configuiations are divided into three classes: global memories,
global memories built by distributed local memories, and local memories. From
the point of view of clients, there ar= alsc many tightly coupled multiprocessors
that have both global memories and local memories.

Tightly coupled multiprocessors with only physical global memories usually
use multicaches to keep their global memories coherent so that the value re-
turned by a read operation is always the same as the value written by the most
recent write operation to the same address. When the cache on a processor is
fairly large, the hit ratio is expected to be high. This kind of machine is good
for fine-grained parallel applications. Since the communication between caches
and global memory is via a fast bus, it is hard to provide more than a few tens
of processors [Archibald 85]. Firefly {Thacker 84, Dragon [McCreight 84] and

CoRa

CHAPTER 1. SHARED VIRTUAL MEMORY 4

Globai i
Global il e Local
memories utle by memories
Local memories
. Firefly, CM*, Concert, .
zgfhg‘; Dragon, Butterfly, VI‘}::C I:;’:
P Synapse, etc. RP3, etc. P, €ic.
Loosel Cosmic Cube,
cou Ieg not possible VAXclusters,
P LAN, ete.

Figure 1.1: Classification of multiprocessors.

Synapse [Frank 84] belong in this category.

Tightly coupled multiprocessors with global memories built by distributed
local memories include machines that take varied approaches to the data coher-
ence problem. Some of the architectures in this category solve the data coher-
ence problem in hardware, some solve it in software, and some solve it in both.
Multiprocessors such as CM* [Fuller 78, Jones 80|, Concert [Anderson 82] and
Butterfly [Larus 84] use shared buses and clusters or crossbars to reference re-
mote memories. RP3 [Pfister 85] is a large-scale architecture constructed by
the combination of multicaches, buses, and communication networks.

Certain tightly coupled multiprocessors have only local memories in which
a processor can use a single instruction to access the memories of its neigh-
bor processors. Examples in this group are Illiac IV [Barnes 68] and Warp
[Annaratone 86]. In Illiac IV, a register of a processor can communicate with
a register of another processor via a routing network. In Warp, an one-
dimensional systolic array processor, processors communicate through cross-

bars.

CHAPTER 1. SHARED VIRTUAL MEMORY 5

All loosely coupled multiprocessors have only local memories. These mul-
tiprocessors do not have a direct remote memory reference; instead processors
communicate by sending packets through their communication links which can
be either local network links or fast bus links. Examples include the Cosmic
Cube [Seitz 85], VAXclusters [Kronenberg 86|, and local area networks of com-
puters [Metcalfc 76, Leach 83].

As Figure 1.1 shows quite plainly, in the spectrum of multiprocessor con-
figurations, there is one conspicuous hole. The goal of this research is to fill
this hole by investigating how to build a shared memory on loosely coupled

multiprocessors, and o explore its realization on existing machines.

1.3 Shared Memory vs. Message Passing

Since the basic communication mechanism in loosely coupled multiprocessors
is sending data via communication links, it is natural to use message passing as
low-level software support. This raises the question of whether a shared memory
based system can be more efficient than a message passihg based system for
parallel computing.

Message passing in concurrent systems is characterized by multiple threads
of control. A pure message passing system usually does not have any shared
global data; instead processes access ports or mailboxes to achieve interprocess
communication. Parallel programs need to use primitives such as send and
receive expliciily through channels, ports, or mailboxes. Although programmers
can use these primitives to synchronize parallel programs, they need to be
conscious of data movement between processes at all times.

Remote procedure call is the synchronous language-level transfer of control
between programs in disjoint address spaces whose primary communication
medium is a narrow channel [Nelson 81]. A remote procedure call mechanism al-
lows programmers to worry less about data movement and and provides clients

with a fairly transparent interface so that remote procedure calls look much

CHAPTER 1. SHARED VIRTUAL MEMORY 6

like loca! procedure cails. However, the transparency of remote procedure calls
is limited because a remote procedure call mechanism actually simulates the
execution in the same address space using completely different address spaces.

Since both message passing and remote procedure calls deal with multiple
address spaces, they both have difficulties with passing complex data structures.
In fact, the difficulty of passing complex data structures is the main drawback
of message passing and remote procedure calls for parallel programming. For
example, passing a list data structure by sending messages will introduce con-
siderable complexity in programming and substantial overhead in both space
and time [Herlihy 82]. In a remote procedure call, there is no good way to pass
a pointer argument [Nelson 81]. This problem becomes more severe when the
data structures are fundamental to a language being implemented on a parallel
machine.

In contrast, a shared memory multiprocessor has no difficulty passing point-
ers because processors share a single address space. Therefore, there is no need
to pack and unpack the data structures containing pointers in messages. Pass-
ing a list data structure simply requires passing a pointer.

Another problem with message passing systems is the difficulty of process
migration because there are multiple address spaces. When migrating a process,
all the operating system resources allocated by the process have to be moved
together; this is very expensive [Powell 83]. In the case where a process has a
few opened ports and files, the pending messages and file access control blocks
need to be transferred. Furthermore, the code and the stack of the process have
to be moved because there is no easy way to translate the contents of different
address spaces efficiently on the fly.

In a shared memory multiprocessor system, a proéess migration only re-
quires moving a process from the ready queue on the source processor to the
ready queue on the destination processor because process control block, code,
and stack are all in the same address space.

Both data structure passing and process migration are important for imple-

CHAPTER 1. SHARED VIRTUAL MEMORY 7

menting parallel programming languages. Although some implementations of
parallel programming languages are based on a message passing facility, expe-
rience with implementing existing parallel languages has shown that a shared
memory architecture can greatly simplify the implementations [Hudak 86b,
Carriero 86b]. In sum, shared memory is highly desirable for parallel com-

putation.

1.4 Shared Memory
on Loosely Coupled Multiprocessors

Many tightly coupled multiprocessors with shared memories are commercially
available, and the computing power of some of these machines can compete
with fast vector machines [Hillis 85, Pfister 85]. Tightly coupled multiproces-
sors should perform better than loosely coupled multiprocessors for parallel
computation. So why bother to implement a shared memory on a loosely cou-
pled multiprocessor?

First of all, to date, tightly coupled multiprocessors have been expensive,
and it is not yet clear whether they are truly cost effective. Loosely coupled
multiprocessors, on the other hand, are relatively less expensive, which is why
it is common to have a local area network of computers.

Secondly, loosely coupled multiprocessors such as a network of workstations
provide programmers with a comfortable programming environment. For ex-
ample, a graphic bit-map display is éomething that a centralized computing
environment cannot offer. COn most tightly coupled multiprocessors, one has
to write parallel programs to achieve fast computation speed and parallel pro-
gramming is more difficult than sequential programming. It is clear that tightly
coupled multiprocessors are far from replacing the programming environment
of a network of workstations.

Furthermore, loosely coupled multiprocessors have higher availability than

CHAPTER 1. SHARED VIRTUAL MEMORY 8

tightly coupled multiprocessors. In a loosely coupled multiprocessor system
such as a network of computers, processors do not rely on each other much;
when some processors go down, other processors may still be usable. Tightly
coupled multiprocessors are poor in this aspect. Processors in a tightly cou-
pled multiprocessor usually depend on one another in the sense that when one
processor crashes, the whole system goes down.

Although loosely coupled multiprocessor systems offer low cost, good pro-
gramming environments, and high availability, their utilization is usually poor.
For example, on the Apollo ring [Leach 83| at Yale University, a large percent-
age cf the nodes are often idle, especially after working hours. One can imagine
that if a shared memory on a loosely coupled multiprocessor could be buiit to
achieve orders-of-magnitude speedup over a uniprocessor, the unused compu: -
ing power in the existing loosely coupled multiprocessor could be effectively
harnessed at no additional hardware cost.

Another reason, perhaps a more important one, is that if it is possible to
build a shared memory on a loosely coupled multiprocessor, it should be possible
to build a shared memory on a network of tightly coupled multiprocessors. This
suggests a radical idea in parallel architectures—building a shared memory
based parallel architecture by using loosely coupled links and software instead

of using expensive interconnection networks.

1.5 A Shared Virtual Memory System

A shared virtual memory is a single address space shared by a number of pro-
cessors (Figure 1.2). Any processor can access any memory location in the
address space.

The memory mapping managers in a shared virtual memory implement the
mapping between local memories and the shared virtual memory address space.
They keep the address space coherent at all tiies; that is, the value returned

by a read operation is always the same as the value written by the most recent

CHAPTER 1. SHARED VIRTUAL MEMORY 9

CPU 1 CPU 2 CPUN
Memory 1 Memory 2 Memory N
Mapping Mapping Mapping

Shared virtual memory

Figure 1.2: Shared virtual memory mapping

write operation to the same address.

A shared virtual memory address space is partitioned into pages. Pages that
are marked read-only can have copies residing in the physical memories of many
processors at the same time. But a page currently being written can reside in
only one processor’s physical memory. If some processor wants to write a page
that is currently residing on other processors, it must get an up-to-date copy of
the page and then tell the other processors somehow to invalidate their copies.

The memory mapping manager views its lccal memory as a big cache of
the shared virtual memory address space for its associated processor. Like the
traditional virtual memory [Denning 80], the shared memory itself exists only
virtually. A memory reference may cause a page fault when the page containing
the memory location is not in a processor’s current physical memory. When
this happens, the memory mapping manager retrieves the page from either
disk or the memory of another processor. This thesis discusses both centralized
manager algorithms and distributed manager algorithms, and shows that a class

of distributed manager algorithms can retrieve pages efficiently on page faults

CHAPTER 1. SHARED VIRTUAL MEMORY 10

while keeping the memory coherent.

A parallel program usually uses only one shared virtual memory address
space by creating a number of processes (threads or tasks). These processes
are lightweight—they share the same address space and the cost of a process
context switch, process creation, or process termination is small [Levin 86]. For
example, the cost of a process creation is the same as that of a few procedure
calls. One of the important goals of the shared virtual memory is to get pro-
cesses of a program to execute on different processors in parallel. To do so,
the appropriate process manager and memory mapping manager must be inte-
grated with the memory mapping manager, which requires a simple operating
system on top of the shared virtual memory. The whole system is called a
shared virtual memory system.

The process manager provides clients with a set of process control primiti.ves
and a set of traditional process synchronization primitives. The main goal of
the process manager is to achieve process transparency, that is, any process
can run on any processor and can migrate from one processor to another at
run' time. The process manager also does simple process scheduling. Since
the communication cost of sending messages on loosely coupled multiprocessor
is high, process scheduling is important. This thesis presents several process
scheduling mechanisms and load balancing strategies.

The memory allocation ma.riager takes care of dynamic memory allocation
in the shared virtual memory address space. Although dynamic memory al-
location for a uniprocessor environment has been studied since the beginning
of operating systems development, dynamic memory allocation for the shared
virtual memory is quite different because processes truly run in parallel. The
main goal of the memory allcoation manager is to allocate memory efficiently
while providing clients with a convenien: interface. This dissertation shows how
to modify a sequential memory allocation algorithm for this purpose.

In general, a shared virtual memory system presents clients with the same

interface as a tightly coupled multiprocessor with a shared memory except

CHAPTER 1. SHARED VIRTUAL MEMORY 11

that the memory synchronization unit is a page. The shared virtual memory
system allows application programs to use the memory in the same manner
as a traditional virtual memory, except, of course, that processes can run on
different processors in parallel.

The performance of parallel programs on a shared virtual memory system
mainly depends on two things: the number of parallel processes (or threads)
the degree of data sharing (or granularity of parallelism '), The shared virtual
memory system will be effective if a parallel program can keep many processors
busy and does not have any memory contention. The number of parallel pro-
cesses determines the maximum number of processors that the program can use
in parallel. The granularity of parallelism is related to the memory contention.
A fine-grained parallel program does not necessaryly create memory contention
because the share virtual memory allows a page to have multiple read copies so
that read accesses to shared data will not create contention at all if the program
exhibits locality of references.

One of the main justifications for the traditional virtual memory is that
memory references in sequential programs generally have a high degree of lo-
cality [Denning 72, Denning 80]. Although memory references in parallel pro-
grams may behave differently from those in sequential ones, a single process is
a sequential program, and should exhibit a high degree of locality. Contention
among parallel processes for the same piece of data depends on the algorithm,
but a common goal in designing parallel algorithms is to minimize such con-
tention for optimal performance. The shared virtual memory attempts to use
the behavior of parallel programs for MIMD multiprocessors to take advantage
of the nature of loosely coupled multiprocessors, just as the traditional virtual
memory system attempted to use the behavior of sequential programs to take

advantage of the nature of random-access disk devices.

1A parallel program has fine-grained parallelism if its parallel processes access shared data

frequently.

CHAPTER 1. SHARED VIRTUAL AMEMORY 12

1.6 Prototype and Experiments

Since parallel programs are complex and the interactions between parallel pro-
cesses are often unpredictable, the only convincing way to justify a shared
virtual memory on loosely coupled multiprocessors is to implement a prototype
system and run some realistic experiments on it. I have implemsnted a pro-
totype shared virtual memory system called IVY (Integrated shared Virtual
memory system developed at Yale). It is implemented on top of a modified
Aegis operating system of the Apollo DOMAIN [Apollo 81, Leach 83]). The
system can be used to run parallel programs on any number of processors on
an Apollo ring network.

IVY consists of 5 modules: simple RPC, memory mapping, process man-
agement, memory allocation, and initialization. The last three modules form
the IVY client interface. Each module consists of a set of primitives that can
be used by application programs. Since IVY is an integrated system, the prim-
itives are placed in a library file. One can produce an IVY image by compiling
a program and binding it with the desired library. Such an image file can be
executed on any number of nodes in the network.

I have written a set of benchmark parallel programs and run them on the
prototype system. These benchmark programs represent a spectrum of likely
practical parallel programs that have reasonably fine granularity of parallelism

and side-effects in shared data structures. The benchmark programs consist of:

¢ a linear equation solver,

a three-dimensional partial differential equation solver,

e sorting,

dot-product,

the traveling salesman problem, and
e matrix multiply.
I ran the programs on the prototype system and collected three kinds of sta-

tistical data: speedups, memory coherence algorithm comparison, and shared

CHAPTER 1. SHARED VIRTUAL MEMORY 13

virtual memory reference miss ratio. The experiments show that, in some cases,
the shared virtual memory system can even yield super-linear speedups for the
parallel programs because the system can exploit not only the power of the
processors but also the power of the combined physical memories.

The results of these experiments strongly support my thesis that shared vir-
tual memory on loosely coupled multiprocessors can achieve orders-of-magnitude
speedups over a uniprocessor for parallel programs, and that it is practical to

implement it on existing architectures.

1.7 Related Work

There is a large body of literature related to the research in this dissertation.
Below is a review of some closely related work in virtual memory and parallel
computing on loosely coupled multiprocessors.

Research on virtual memory management began in the 1960s [Denning 70]
and has been an important topic in operating system design ever since. The
research focused on the design of virtual memory systems for uniprocessors. An
important observation was that sequential programs exhibit locality of reference
[Denning 72]. The Working set was an important concept used in virtual mem-
ory design to maximizes the localities of programs [Denning 68, Denning 80).

A number of the early systems used memory mapping to provide access to
different address spaces. The representative systems are Multics and Tenex
[Daley 68, Bobrow 72]. In these systems, processes in different address spaces
can share data structures in mapped memory pages. But the memory mapping
design is for uniprocessors.

Spector proposed a remote reference/remote operation model [Spector 81,
Spector 82] in which a master process on a processor performs remote refer-
ences and a slave process on another processor performs remote operations,
Using processor names as part of the address in remote reference primitives,

this model allows a loosely coupled multiprocessor to behave in a way sim-

CHAPTER 1. SHARED VIRTUAL MEMORY 14

ilar to CM* [Fuller 78, Jones 79] or Butterfly [Larus 84] ir which a shared
memory is built from local physical memories in a static manner. Although
implementing remote memory reference primitives in microcode can greatly
improve efficiency, the cost of accessing a remote memory location is still sev-
eral orders-of-magnitude more expensive than a local memory reference. The
model is useful for data transfer in distributed computing, but it is unsuitable
for parallel computing.

Among the distributed operating systems for loosely coupled multiproces-
sors, Apollo Aegis [Apollo 81, Leach 82, Leach 83] and Accent [Rashid 81,
Fitzgerald 86] have had strong impact on the integration of virtual memory
and interprocess communication. Both Aegis and Accent permit mapped ac-
cess to data objects that can be located anywhere in a distributed system.
Both of them view physical memory as 2 cache of virtual storage. Aegis uses
mapped read and write memory as its fundamental comxmunication paradigm.
Accent has a similar facility called copy-on-write and a mechanism that allows
processes to pass data by value. The data sharing between processes in these
systems is limited at the object level, the system designs are for distributed
computing rather than parallel computing.

Realistic parallel computing work on loosely coupled multiprocessors has
been limited. Much work has focused on message passing [Finkel 85, Seitz 85,
Cheriton 86]. Tt is possible to gain large speedups by message passing, but
programming applications is difficult [Cheriton 86). Furthermore, as mentioned
above, message passing has difficulties in passing complicated data structures.

Another direction has been to use a set of primitives to access a global
space that is used to store shared data structures of processes [Cheriton 86,
Carriero 86a]. Although programming the global space does not require data
movement as much as message passing, programmers still have to explicitly use
the primitives. In a primitive global-space system, passing complex data struc-
tures and process migration are as difficult as in message passing systems, since

accessing the data structures and process migration are by value or by name.

CHAPTER 1. SHARED VIRTUAL MEMORY 15

Furthermore, using primitives may greatly reduce the efficiency of parallel pro-
grams because a primitive operation requires at least one procedure call, which
costs much more than a simple memory reference. If there is a primitive oper-
ation in an inner loop of a parallel program, the execution of such a program
on one processor may be much slower than that of the best sequential program
in which accessing the corresponding data structure is a simple memory refer-
ence. The shared virtual memory system would not have this problem because
it presents clients with a real shared memory address space on which there is
no need to use any primitive operations. So once the pages holding a data
structure are paged in, accessing the data structure is the same as accessing it

on a uniprocessor.

1.8 Organization of The Thesis

Chapters 2 and 3 are somewhat theoretical discussions concentrating on the
algorithms for designing a shared virtual memory system. Chapter 2 discusses
the algorithms for solving the memory coherence problem in the shared virtual
memory mapping managers. Chapter 3 studies the issues and the algorithms
for designing the process management unit in a shared virtual memory system.

Chapters 4 and 5 discuss how to implement a shared virtual memory sys-
tem on existing machines. Chapter 4 is a detailed discussion on the engineer-
ing issues in implementing a shared virtual memory system on different types
of existing loosely coupled multiprocessors. Chapter 5 describes an example,
a prototype system implemented on an Apollo ring network of workstations.
Readers who are interested in implementation but not in detailed engineering
issues may skip Chapter 4. Readers with no interests in implementation may
skip both chapters.

Chapter 6 presents the experimental results of a set of benchmark programs
run on the prototype system. Finally, Chapter 7 summarizes the contribution

this research makes to the field and proposes future research directions.

Chapter 2

Memory Coherence

The shared virtual memory provides a virtual address space that is shared
among all processors in a loosely coupled multiprocessor system, as depicted
graphically in Figure 2.1. The shared memory itself exists only virtually. Ap-
plication programs can use it in the same way as a traditional virtual memory,

except, of course, that processes can run on different processors in parallel.

CPU 1 CPU 2 CPUN
Memory 1 Memory 2 Memory N
Mapping Mapping Mapping

- ~

S -~ -~ ~

- ~

Shared virtual memory

Figure 2.1: Shared virtual memory mapping.

Each processor has a memory mapping manager that not only “pages” data

16

CHAPTER 2. MEMORY COHERENCE 17

between physical memories and disks, as in a conventional virtual memory
system, but it also “pages” data between the physical memories of the individual
processors. Thus data can naturally migrate between processors on demand.
The main difficulty in building a shared virtual memory mapping manager is
solving the memory coherence problem. This chapter presents, analyzes and

compares a number of algorithms for solving this problem.

2.1 Memory Coherence Problem

A memory is coherent if the value returned by a read operation is always the
same as the value written by the most recent write operation to the same
physical address. A memory architecture with one access path in all the layers
should have no coherence problems. A single access path, however, cannot
satisfy today’s high performance requirements. The coherence problem was
introduced when caches appeared in uniprocessors (see [Smith 82] for a survey),
and has become more complicated with the introduction of a multicache for
shared memories on multiprocessor systems [Tang 76, Censier 78, Goodman 83,
Thacker 84, Frank 84, Yen 85, Katz 85].

The memory coherence problem in a shared virtual memory system differs
from that in multicache systems. A multicache multiprocessor system usually
has a number of processors sharing a physical memory through their private
caches. The connection between the caches and the memory unit is a fast bus.
Since the size of a cache is relatively small, a sophisticated coherence protocol
is usually implemented in the multicache hardware such that the time delay
of conflict writes to a memory location is small. A shared virtual memory
on a loosely coupled multiprocessor has no physically shared memory (it only
virtually exists). The size of the private memory of a processor is as large as
the shared virtual memory. So, the coherence problem in the shared virtual
memory needs to be solved in software.

There are two cases that cause coherence problems in a shared virtual mem-

CHAPTER 2. MEMORY COHERENCE 18

ory:
e A process on processor ¢ reads a piece of data D without noticing that
there is a copy of D on processor j that has been modified by another
Process on processor j.
¢ A process has a piece of data D on processor 7, the process migrates to
processor j and gets a copy of D, and then the process migrates back to
processor ¢ after D is modified.
These two cases can be merged into one if the problem is viewed in terms of
Processors:
e processor ¢ reads a piece of data D without noticing that there is a copy
of D on processor J which has been modified.
Coherence can be maintained if a processor is allowed to update a piece of data
only while no other processor is updating or reading it. Under this constraint
many processors can read a piece of data as long as no other processor is
updating it; this is a form of the well-known readers/writers problem. It is

obvious that the size of “a piece of data” can be arbitrary.

2.2 Design Choices for Memory Coherence

There are two design choices that greatly influence the implementation of a
shared virtual memory: the granularity of the memory units, and the strategy

for maintaining coherence.

2.2.1 Granularity

The size of the “memory units” that are to be coherently maintained is an
important consideration in a shared virtual memory. This section gives several
criteria for choosing this granularity.

In a typical loosely coupled multiprocessor system, sending large packets of

data (say one thousand bytes) is not much more expensive than sending small

CHAPTER 2. MEMORY COHERENCE 19

ones (say less than ten bytes) [Spector 81). This similarity in cost is usually
due to the typical software protocols and overhead of the virtual memory layer
of the operating system. As a result, relatively large memory units are possible
in the shared virtual memory.

On the other hand, the larger the memory unit, the greater the chance for
contention. Memory contention occurs when two processors attempt to write
to the same location (as in a shared memory system) as well as when two
processors attempt to write to different locations in the same memory unit.
Although clever memory allocation strategies might minimize contention by
arranging concurrent memory accesses to locations in different memory units,
such a strategy would lead to the inefficient use of memory space and introduce
an inconvenience to the programmer. So, the possibility of contention indicates
the need for relatively small memory units.

A suitable compromise in granularity is the typical page used in a conven-
tional virtual memory implementation. The page sizes of today’s computers
vary, typically from 256 bytes to 8K bytes. If the page size on an existing sys-
tem is small, choosing this size of a memory unit has several advantages. First,
experience has skown that page size such as 1K bytes are suitable with respect
to contention, and as mentioned above they should not impose undue commu-
nications overhead as long as a page can fit into a packet. In addition, such
a choice allows us to use existing page fault schemes (hardware mechanisms)
that allow single instructions to trigger page faults and trap to appropriate fault
handlers. More precisely, a program can set the access rights to the pages in
such a way that memory accesses that could violate memory coherence cause a
page fault, and thus the memory coherence problem can be solved in a modular
way in the page fault handlers. If the page size is larger than a packet size, the
cost of sending a page may be too expensive for implementing a shared virtual
memory. In this case, it is important to use special protocols to reduce the cost
of page moving [Zwaenepoel 85].

One of the main justifications for virtual memory, of course, is that mem-

CHAPTER 2. MEMORY COHERENCE 20

ory references in sequential programs generally have a high degree of locality
of reference [Denning 72, Denning 80]. Although memory references in par-
allel] programs may behave differently from those in sequential ones, a single
process is a sequential program, and should exhibit a high degree of locality.
Contention among parallel processes for the same piece of data depends on the
algorithm, but a common goal in designing parallel algorithms is to minimize
such contention for optimal performance. With the communication perfor-
mance of today’s loosely coupled architectures, it is plausible to implement a
shared virtual memory by taking the page size of an existing system as the

granularity.

2.2.2 Memory Coherence Strategies

The memory mapping managers in a shared virtual memory implement the
mapping between local memories and the shared virtual memory address space.
They keep vhe address space coherent at all times. The memory mapping
manager views its local memory as a big cache of the shared virtual memory
address space for its associated processor.

When a processor performs a read or write in the address space of a shared
virtual memory, it may create a coherence problem. When this happens, the
memory mapping manager retrieves the page from either disk or the memory
of another processor. As mentioned earlier, page size granularity lets us use
hardware page protection mechanisms to cause a fault when an invalid memory
reference occurs, and thus resolve coherence problems in page-fault handlers.
Therefore, our algorithms for solving the coherence problem are manifested as
fault handlers, their servers, and the page tables on which they operate.

The data structure for maintaining the coherence has at least the following
information about each page:

o access — indicating the accessibility to the vage,

® copy set — containing the processor numbers that have read copies of the

CHAPTER 2. MEMORY COHERENCE 21

page, and
e lock — for synchronizing multiple page faults by different processes on
the same processor and for synchronizing remote page requests.
Following uniprocessor virtual memory convention, the data structure is called
a page table. Usually every processor has a page table on it, but the same page
entry in different page tables may be different.
It is helpful to first consider the spectrum of choices one has for solving the
coherence problem. These choices can be classified by the way in which one

deals with page synchronization and page ownership, as shown in Table 2.1.

Page ownership strategy
Page Dynamic
synchronization —
method Static Centralized Distributed manager
manager Fixed Dynamic
Invalidation apprroLgiate okay good good
Writeback net not not not
ritebac appropriate | appropriate | appropriate | appropriale

Table 2.1: Spectrum of solutions to the memory coherence problem.

Page synchronization

There are two basic approaches to page synchronization: invalidation and wrste-
back. Both approaches use a page as the memory synchronization unit to keep
shared virtual memory coherent.

In the invalidation approach, there is only one owner processor for each
page. This processor has either write or read access to the page. If a processor

has a write fault, its fault handler will

CHAPTER 2. MEMORY COHERENCE 22

e invalidate all the copies of the page that contains the faulting memory
location,
¢ change the access of the page to write,
® move a copy the page to the processor if the processor does not have a
copy of the page, and
e return to the faulting instruction.
After returning, the processor “owns” that page and can proceed with the
write operation and other read or write operations until the page ownership is
relinquished to some other processor. If a processor has a read fault, the fault
handler will
¢ change the access of the page, that contains the faulting memory location,
on the processor that has write access to read, .
¢ move a copy of the page to the processor and set the access of the page

to read, and
e return to the faulting instruction.

After returning, the processor can proceed with the read -operation and other
read operations to this page in the same way that normal local memory does
until the page is given to someone else.

In the writeback approach, a processor treats a read fault just as it does in
the invelidation approach. If a processor has a write fault, the fault handler
will

¢ write to all copies of the page and

e return to the faulting instruction.

The philosophy of a shared virtual memory requires that pages be shared freely,
but this means that every write to a shared page needs to generate a fault on
the writing processor and update all copies.

It is possible to combine writeback and invalidation. This combination
differs from the writeback approach in dealing with write faults, which has

many variations in this class of algorithms. For example:

CHAPTER 2. MEMORY COHERENCE 23

e If only one processor has a copy of the page that contains the the faulting

memory location, then

— move the page to the faulting processor,
— set the access of the page on the faulting processor to write, and

— invalidate the copy on the original processor,

e If the page has more than one copy, then update all the copies.

e Return to the faulting instruction.
This type of algorithm is better than the pure writeback ones because it is possi-
ble to have write access to a page so that some write operations to shared pages
can proceed without generating faults. The combination scheme, however, does
not overcome the difficulty of implementing updates, and still causes unneces-
sary faults for write operations to shared pages. Clearly doing these updates
will be expensive, and algorithms using writeback do not seem appropriate for
loosely coupled multiprocessors. Thus they are not further considered in this

thesis, as indicated in Table 2.1.

Page ownership

The ownership of a page can be handled either statically or dynamically. In
the static approach, a page is always owned by the same processor. Other
processors are never given full write access to the page; rather they must ne-
gotiate with the owning processor, and must generate a write fault every time
they need to update the page. As with the writeback approach, static page
ownership is an expensive solution for existing loosely coupled multiprocessors.
Furthermore, it constrains desired modes of parallel computation. Thus in this
thesis I only consider dynamic ownership strategies, as indicated in Table 2.1.

The strategies for maintaining dynamic page ownership can be subdivided

into two classes: centralized and distributed. The processor that controls page

CHAPTER 2. MEMORY COHERENCE 24

ownership is called the page manager, and thus there are centralized or dis-
tributed managers. Distributed managers can be further classified as either
fized or dynamic, referring to the distribution of ownership data.

The resulting combinations of strategies are shown in Table 2.1, where I have
marked as inappropriate all combinations involving writeback synchronization
or static page ownership. This thesis only considers the remaining choices—
algorithms based on a centralized manager, a fixed distributed manager, and a

dynamic distributed manager.

2.3 Communication Model and Cost Measure-
ment

In order to study different algorithms and compare them with one another
in a uniform way, this chapter uses a communication model and some cost
measurement functions. The communication model assumed here characterizes
both bus-like and ring-like communication links which are the most widely used
network connections in today’s loosely coupled multiprocessors.

The communication model consists of four elements: processor, sending
queue, receiving queue, and communication link. A processor consists of a CPU
and its local memoi'y. The sending and receiving queues are message buffers
interconnected with the communication link. The communication link is as-
sumed to be a complete connection such that any processor can communicate
with any other processor directly. Furthermore, it is possible to have a broad-
cast facility on the communication link so that any processor can broadcast a
message to all other processors. Figure 2.2 shows an example configuration.

The sending queue always maintains the messages sent by the processor and
sends them in order to their destinations. Similarly, the receiving queue queues
the arriving messages and dispatches each message to its proper server. Both

sending and dispatching messages are atomic operations so that messages sent

CHAPTER 2. MEMORY COHERENCE

Processor 1

Processor 2

I 1

Processor N

L]

R]
o

Figure 2.2: Communication model.

and received are strictly ordered. If processor ¢ sends messages m; and mgq
to processor j, then processor j will receive m; and mj, and dispatch them in
order.

Algorithms should be evaluated based on their system performance. In other
words, algorithm @, is better than algorithm a, if the system based on a, can
finish parallel programs faster than the one based on az. Instead of running
many parallel programs, this chapter evaluates algorithms by estimating the
cost for each page fault and the cost spent on each processor. The estimation
of the former gives a good idea about the response time of a page fault. The
latter relates the balance of the work load in terms of page faults on different
processors. Both parameters contribute directly to the throughput of a system.

Since the communication and faulting mechanism costs dominate the cost
of local memory references on most loosely-coupled architectures, remote oper-
ations dominate the efficiency of an algorithm. This chapter assumes that any
remote operation requires two messages, a request and a reply, and that a re-
liable communication protocol is used so that once a processor sends a request
(no matter whether it is a point-to-point message, broadcast, or multicast), it
will eventually receive a reply. For simplicity, the additional overhead of the

reliable protocol is ignored.

CHAPTER 2. MEMORY COHERENCE 26

The following notations are used in estimating the cost of sending messages

and receiving messages:
e the cost of sending a message is denoted by C,.
e the cost of receiving a message is denoted by C,.

e the cost of an invalidation of m copies is denoted by Cy(m).

the parallel cost of C, and C, is denoted by C, @ C,, which is not less
than the maximum of C; and C, but less than C, + C,.

The parallel cost is used for sending broadcast or multicast messages. For
instance, a multicast message is normally received by k processors where k > 1.
If all k processcrs are idle, the cost of receiving the broadcast message is C,. If
some of them have ready processes, the cost of receiving the broadcast message
is greater than C,. The notion of @ is a way of characterizing this vague cost
measurement.

In the discussion of algorithms throughout this chapter, Cread(?) denctes the
the cost of a read page fault on processor ¢, and Cppife () denotes the cost of a
write page fault. These two functions show the response time of a page fault.
Clotat () denotes the total cost in dealing with page faults on processor t. This
estimate follows from these definitions:

o Ciny(2) is the total cost of invalidations on processor 1.

f+(7) is the total number of read page faults on processor ¢.

fu(7) is the total number of write page faiilts on processor 3.

e rp(?) is the total number of page fault requests received on processor 1.

Tiny(?) is the total number of invalidation requests received on Processor .

710¢(%) is the total number of page locating requests received on processor <.
® 37uwd(?} is the total number of forwarding requests sent from processor i.

The estimates assume IV processors in the shared virtual memory.

CHAPTER 2. MEMORY COHERENCE 27
2.4 More about Invalidation

2.4.1 Invalidation and Synchronization

Invalidation is probably the right approach to synchronizing pages in loosely
coupled multiprocessor systems when building a shared virtual memory. Is
it possible to do an invalidation efficiently with a traditional synchronization
mechanism?

In a parallel program based on a global memory, accesses to shared data
structures are synchronized by synchronization primitives. When no synchro-
nization primitive is used, it is assumed that simultaneous memory accesses
can be done in any possible order. Consider a scenario in which a processor
has a write fault to a page with two read copies. Initially, both processor 1
and processor 2 have read access to the page. Assume processor 1 has a write
fault which results in sending an invalidation message to processor 2. Before
processor 2 receives the invalidation request, however, it does not know what
is happening to the page; its processes can still read the page (depicted in the
region between a and b in Figure 2.3). After the invalidation is complete, pro-
cessor 1 has write access to the page, but processor 2 has no way of knowing
what is in the page until there is a read fault or write fault that takes the page
back. .

This observation motivates us to wonder whether the invalidation operation
can be deferred to the point where a write fault occurs, or in other words,
whether the region between a and b on processor 2 can be eliminated. Such
an elimination is called a deferred invalidation. The deferred invalidation can
extend the time of read access ¢° the read copies of a page so that parallel
programs may get more parallelism (Figure 2.4). Obviously, the read access
time on processor 2 in Figure 2.4 is longer than the one in Figure 2.3. The

extended region between a and b can in fact be very long.

Unfortunately, this strategy is not correct in applications with traditional

s}

CHAPTER 2. MEMORY COHERENCE 28

Iy 7
write access
nil access [t mmmmmm-----
"“""""'""" invalidate
3
write access write fault nil access
Ab
T g
fnvalidate [~ - - - -~~~
read access y
write fault read access
7 3
Processor 1 Processor 2

Figure 2.3: Invalidation of a page.

synchronization mechanisms. For example, it does not work in the consumer-

producer problem. The following example shows why:

Proccess 1:
WHILE true DO BEGIN

P(séﬁ'):
x = z;
V¢ séﬁ');
END;.

Process 2:
WHILE true DO BEGIN

P(Séﬁ‘):

CHAPTER 2. MEMORY COHERENCE 29

$ $
write access
nil access St
it R invalidate
' nil access
4
write access write fault
-
4
tnvalidate l a
read access
read access Jy
write fault
7
Processor 1 Processor 2

Figure 2.4: Deferred invalidation of a page.

¥y = x;

V(Sem);

END;
Suppose variable x is in the shared virtual memory. Process 2 uses x and process
1 assigns x on each iteration. When the two processes in the example above run
on different processors, they access x in an arbitrary way. The synchronization
of accessing x is done by a traditional synchronization mechanism known as
P/V operations [Dijkstra 68]. Assume that the process scheduler in the system
guarantees that in some finite amount of time, both loops get executed at least

once (a commonly accepted “fairness” criterion.of scheduling), then an observed

computation sequence might be:

CHAPTER 2. MEMORY COHERENCE 30

X = z; (process 2)
X = z; (process 2)
x := z; (process 2)
¥y = x; (process 1)

The read of x will not get the most recent value of x, because process 2 may not
generate a read page fault on the page where x resides if a deferred invalidation
is performed. Thus, the idea of the deferred invalidation does not guarantee
the memory coherance in this case.

Another idea to gain more parallelism is to make the invalidation operation
asynchronous. The execution time of an asynchronous invalidation is shorter
than a synchronous invalidation because the former does not need to wait for a
reply. Figure 2.5 shows that an asynchronous invalidation on processor 1 takes
less time than the one in Figure 2.3; and the region between ¢ and d on processor
1 is the benefit gained by the asynchronous invalidation. The invalidation on
processor 2 cannot be asynchronous becausz processor 2 needs to make a copy
of the page which is carried back by the invalidation reply. This idea still does
not work in the example above; process 1 may still use the stale value of x.

The failure of the two approaches to gaining more parallelism in invalida-
tion does not mean that the observation is necessarily wrong, but means that
traditional synchronization mechanisms are not appropriate. It is conceivable
that one can invent a new synchronization mechanism to guarantee correct-
ness. One possibility is to defer invalidation until synchronization points (p/v

operations, I/O, context switches, and so on).

2.4.2 Invalidation Methods

There are at least three ways to invalidate the copies of a page: individual,
broadcast, and multicast. The individual invalidation is just a simple loop:

Invalidate:
Invalidate(p, copy.set)
FOR i in copy-set DO

CHAPTER 2. MEMORY COHERENCE 31

A 'y
write access
nil access - - - -e------
e R invalidate
\
write fault nil access
write access Ab
d
---------------- c-“ ra'--------------"
fnvalidate
F 3
read access write fault read access
)\
Processor 1 Processor 2

Figure 2.5: Asynchronous invalidation of a page.

send an invalidation request to processor i;

Broadcast invalidation does not need a copy set; it is just a simple broadcast
message. Multicast invalidation depends on the multiprocessor interface. The

server of the invalidation operation is simple:

frvalidate server:
PTable[p].access := nil;

For m copies on an N processor system, the cost of an invalidation can be

CHAPTER 2. MEMORY COHERENCE 32

expressed as follows:
(0 m =0,

2(m—1)(C, +C,) individual,
N-1
Cy(m) = mC, + (m —1)C, + €D C, broadcast,

i=t
m=1

mC, + (m —1)C, + € C, multicast.

\ i=1

An individual invalidation sends 2(m — 1) messages and receives 2(m — 1) mes-
sages. A broadcast invalidation sends m messages and receives N +m — 2
messages of which V — 1 messages are received in parallel. A multicast in-
validation needs to send m messages and receive 2(m — 1) messages in which
(m — 1) messages are received in parallel.

In general, multicast invalidation is the best approach. Unfortunately most
of the loosely coupled systems do not have a multicast facility of this kind.

Broadcast invalidation is expensive when N is large.

2.5 Centralized Manager Algorithms

2.5.1 A Monitor-like Centralized Manager Algorithm

Our centralized manager is similar to a monitor [Hoare 74], consisting of a data
structure and some procedures that provide mutually exclusive access to the
data structure. The centralized manager resides on a single processor, and
maintains a table called Info which has one entry for each page, each entry
having three fields:
* The owner field contains the single processor that owns that page; namely,
the most recent processor to have write access to it.
o The copy set field lists all processors that have copies of the page. This
allows an invalidation operation to be performed without using broad-est.
e The lock field is used for synchronizing requests to the page, as will be

described shortly.

CHAPTER 2. MEMORY COHERENCE 33

Each processor also has a page table called PTable which has two fields: access
and lock. This table keeps information about the accessibility of pages on the
local processor.

In this algorithm, a page does not have a fixed owner, and there is only
one manager that knows who the owner is. The owner of a page sends a copy
to processors requesting a read copy. As long as a read copy exists, the page
is not writable without an {nvalidation operation, which causes invalidation
messages to be sent to all processors containing read copies. Since this is a
monitor-style algorithm, it is easy to see that the successful writer to a page
always has the truth of the page. When a processor finishes a read or write
request, a confirmation message is sent to the manager to indicate completion
of the request.

Both Info table and PTable have page-based locks. They are used to syn-
chronize the local page faults (i.e. fault handler operations) and remote fault
requests (i.e. server operations). When there is more than one process on a
processor waiting for the same page, the locking mechanism prevents the pro-
cessor from sending more than one request. Also, if a remote request for a
page arrives and the processor is accessing the page table entry, the locking
mechanism will queue the request until the entry is released.

The algorithm is characterized by fault Liandlers and their servers:

Algorithm 2.1 MonitorCentralManager

Read fault handler:

Lock(PTablel p J.lock);

IF I am manager THEN BEGIN
Lock(Infol p].lock);
Infol p].copyset

:= Infol p].copyset U {ManagerNode};

receive page p from Infol[p].owner;
Unlock(Infol p].lock);
END;

ELSE BEGIN 3
ask manager for read access to p and a copy of p;
send confirmation to manager;

CHAPTER 2. MEMORY COHERENCE 34

END;
PTable[p].access := read;
Unlock(PTable[p].lock);

Read server:
Lock(PTablel p }.lock);
IF I am owner THEN BEGIN
PTablel p].access := read;
send copy of p;
END;
Unlock(PTable[p }.lock);

IF I am manager THEN BEGIN
Lock(Infol p].lock);
Infol p 1.copyset
:= Infol p].copyset U {RequestNode};
ask Info[p].owner to send copy of p to RequestNode;
receive confirmation from RequestNode;
Unloe:(Infol p J.lock);
END;

Write fault handler:

Lock(PTable[p].lock);

IF I am manager THEN BEGIN
Lock(Infol p]1.lock);
Invalidate(p, Infol p 1.copyset);
Infol p].copyset := {};:
Unlock(Infol p 1.lock);
END; -

ELSE BEGIN
ask manager for write access to p;
send confirmation to manager; ..
END; '

PTable[p].access := write;

Unlock(PTablel[p 1.lock);

Write server:
Lock(PTable[p J.lock);
IF I am owner THEN BEGIN
send copy of p:
PTable[p].access := nil;
END;
Unlock(PTable[p].lock);

CHAPTER 2. MEMORY COHERENCE 35

IF I am manager THEN BEGIN
Lock(Infol p]1.1lock);
Invalidate(p, Infol p].copyset);
Info[p 1.crpyset := {};
ask Info[p].owner to send p to RequestNode;
receive confirmation from RequestlNode;
Unlock(Infol p].lock);
END;

The confirmation message indicates the completion of a request to the man-
ager, so that the manager can give the page to someone else. Together with
the locking mechanism in the data structure, the manager synchronizes the
multiple requests from different processors. '

A read page fault on the manager processor needs 2 messages, one to the
owner of the page, another from the owner. A read page fault on a non-manager
processor needs 4 messages, one to the manager, one to the owner, one from
the owner, and one for confirmation. Let us assume that processor 1 is the
manager; then
2(C,+C,) ifi=1,
4(C,+C,) ifi#1

A write page fault costs the same as a read page fault except that it includes

Cread (l) =

the cost of invalidation:
2(Cy+ C)+ Cy(m) ifi=1,
4(C,+C,)+Cy(m) ifi#1

where m is the number of read copies of the faulting page.

Cwn'lc (z) =

The total paging cost of the algorithm on a single processor is approximated
by:

[2(£,(8) + £u())(C, + C,) + Cino()
+ 7iny(2)Cr + 7, (2)(C, + Cy)

Crotal(?) = § +2 i(fr(j) + fu(@))(Cs + Cr) ifi=1, (2.1)

2(£+() + fu(©))(Cy + Cv) + Ciny (i) + tinu(5)C:
+1,(8)(C, + C,) ifd# 1.

CHAPTER 2. MEMORY COHERENCE 36

Note the iterated sum term in the equation when ¢ = 1. It means (not sur-
prisingly) that a traffic bottleneck at the manager may occur as N becomes
large.

Since the centralized manager plays the role of helping other processors
locate where a page is, the number of messages for locating a page is a measure
of the complexity of the algorithm. When a non-manager processor has a page
fault, it sends a message to the manager and gets a reply message from the
manage:, so the ccmplexity of the algorithm is:

Theorem 2.1 The worst-case number of messages to locate a page in the cen-
tralized manager algorithm 1s two.

Although this algorithm uses only two messages in locating a page, it re-
quires a confirmation message whenever a fault appear: on a non-manager
processor. Eliminating the confirmation operation is the motivation for the

following improvement to this algorithm.

2.5.2 An Improved Centralized Manager Algorithm

The primary difference between the improved centralized manager algorithm
and the previous one is that the synchronization of page ownership has been
moved to the individual owners, thus eliminating the confirmation operation
to the manager. The locking mechanism on each processor now deals not only
with multiple local requests, but also with remote requests. The manager still
answers the question of where a page owner is, but it no longer synchronizes
requests.

To accommodate these changes, the data structure of the manager must
change. Specifically, the manager no longer maintains the copy set informa-
tion, and a page-based lock is no longer needed. The information about the
ownership of each page is still kept in a table called Owner, but an entry in the
PTable on each processor now has three ﬁelds:_ access, lock, and copy set. The

copy set field in an entry is valid if and only if the processor that holds the page

CHAPTER 2. MEMORY COHERENCE

table is the owner of the page.
The fault handlers and servers for this algorithm are as follows:
Algorithm 2.2 CentralManager

Read fault handler:
Lock(PTable[p J.lock);
IF I am manager THEN
receive page p from owner[p];
ELSE
ask manager for read access to p and a copy of p:
PTable[p 1l.access := read;
Unlock(PTable{ p].lock);

Read server:

Lock(PTable[p].lock);

IF I am owner THEN BEGIN
PTable[p].copyset

:= PTable[p].copyset U {RequestNode};

PTable[p].access := read;
send p;
END

ELSE IF I am manager THEN BEGIN
Lock(ManagerLock);
forward request to owner[p];
Unlock(ManagerLock);
END;

Unlock(PTable[p].lock);

Write fault handler:
Lock(PTable[p].lock);
IF I am manager THEN
receive page p from owner[p];
ELSE
ask manager for write access to p and P's copyset;
Invalidate(p, PTable[p].copyset);
PTable[p].access := write;
PTable[p 1.copyset := {};
Unlock(PTablel[p].lock);

Write server:
Lock(PTable[p 1.lock);
IF I am owner THEN BEGIN

37

CHAPTER 2. MEMORY COHERENCE 38

send p and PTable[p 1.copyset;
PTable[p].access := nil;
END

ELSE IF I am manager THEN BEGIN
Lock(ManagerLock);
forward request to owner[p];

owner[p] := RequestNode;
Unlock(ManagerLock);
END;

Unlock(PTable[p].lock);

Although the synchronization responsibility of the original manager has
moved to individual processors, the functionality of the synchronization remains
the same. For example, consider a scenario in which two processors P, and P,
are trying to write into the same page owned by a third processor P;. If the
request from P, arrives at the manager first, the request will be forwarded to
P3. Before the paging is complete, suppose the manager receives a request from
P,, then forwards it to P,. Since P, has not received ownership of the page yet,
the request from P, will be queued until P, finishes paging. Therefore, both P;
and P, will receive access to the page in turn.

The cost of a read page fault is:

2C,+C,) ifi=1,

Creadlt) =
) 3(C,+Cy) ifi#l

Compared with the cost of a read page fault in the monitor-like algorithm,
this algorithm saves one send and one receive per fault on the non-manager

precessors. The cost of a write page fault is similar:

20C, +C)+ Cy(m) ifi=1,

Curite(?) =
() 3(C, +C,) + Co(m) ifi#1

where m is the number of read copies of the faulting page.

CHAPTER 2. MEMORY COHERENCE 39

The total paging cost on processor i is defined by:

[2(£,(8) + fu(D)(Cy + C.) + Ciny 4)
+ fv(i)cr + f,(i)(C, + Cr)

Cunl) =1 + L)+ LGNC.+C) i=1 (@)

2(fr(7') + fw(l))(ca + Cr) + Cinv(i)
+LEC+ LE)C+C) AL

The iterated sum term in the equation when ¢ = 1 is a factor of 2 less than
the one in the monitor-like centralized manager algorithm (Equation 2.1), an
obvious improvement.

Decentralizing the synchronization improves the overall performance of the
shared virtual memory, but for large N there still might be a bottleneck at the

manager processor, because it must respond to every page fault.

2.6 Distributed Manager Algorithms

In the centralized manager algorithms described in the previous section, there
is only one manager for the whole shared virtual memory. Clearly such a cen-
tralized manager can be a potential bottleneck. This section discusses several

ways of distributing the managerial task among the individual processors.

2.6.1 A Fixed Distributed Manager Algorithm

In a fized distributed manager scheme, every processor is given a predetermined
subset of the pages to manage. The primary difficulty in such a scheme is choos-
ing an appropriate mapping from pages to processors. The most straightforward
approach is to distribute pages evenly in a fixed manner to all processors. For
example, suppose there are M pages in the shared virtual memory, and that

I'={1,...,M}. An appropriate mapping function H could then be defined by:

H(p)=pmod N (2.3)

CHAPTER 2. MEMORY COHERENCE 40

where p € I and N is the number of processors. A more general definition is:
)
H(p) = (£) moa v (2.4)

where s is the number of pages per segment. Thus defined, this function dis-
tributes manager work by segments.

Another variation is to use a suitable hashing function or to provide a default
mapping function that clients may override by supplying their own mapping.
In this way, the map could be tailored to the data structure in the application
and the expected behavior of concurrent memory references.

With this approach there is one manager per processor, each responsible for
the pages specified by the static mapping function H. When a fault occurs on
page p, the faulting processor asks processor H(p) where the true page owner
is, and then proceeds as in the centralized manager algorithm.

The total cost for page faults on processor i is given by:

Crotat(?) = 2(£(3) + fu())(Cs + Cr) + Ciny(2) + Tinu(2) C, (2.5)
+T_,,(i)(C, + Cr) + rloc(i)(ca + C,)

If the distribution function H(p) fits application programs well, then one can
assume that:

18 (1) 22 DG Tioe0)

Thus we have the following approximation:
L o1& .
rloc(z) = NZ(fr(.?) + fw(]))'
Jj=1

Note that Ciya(?) in equation 2.5 is greater than Cioa (%) in equation 2.1 and 2.2
when 7 # 1, but it is much less when i = 1. The changing of Clotat(?) value re-
flects the transfer of traffic on processor 1 to other processors by the distribution
function, thus alleviating the bottleneck.

Our experiments have shown that the fixed distributed manager algorithm

is substantially superior to the centralized manager algorithms when a parallel

CHAPTER 2. MEMORY COHERENCE 41

program exhibits a high rate of page faults. However, it is difficult to find
a good static distribution function that fits all applications well. Indeed, for
any given function it is always possible to find a pathological case that pro-
duces performance no better than the centralized scheme. So, we would like to

investigate the possibility of distributing the work of managers dynamically.

2.6.2 A Broadcast Distributed Manager Algorithm

An obvious way to eliminate the centralized manager is to use a broadcast
mechanism. With this strategy, each processor manages precisely those pages
that it owns, and faulting processors send broadcasts into the network to find
the true owner of a page. Thus the Owner table is eliminated completely, and
the information of ownership is stored in each processor’s PTable, which, in
addition to access, copy set and lock fields, has an owner field.

More precisely, when a read fault occurs, the faulting processor P sends a
broadcast read request, and the true owner of the page responds by adding P to
the page’s copy set field and sending a copy of the page to P. Similarly, when
a write fault occurs, the faulting processor sends a broadcast write request, and
the true owner of the page gives up ownership and sends back the page and its
copy set. When the requesting processor receives the page and the copy set, it
invalidates all copies.

The fault handlers and servers for such a naive algorithm are given below:
Algorithm 2.3 BroadcasiManager

Read fault handler:
Lock(PTablel[p].lock);
broadcast to get p for read;
PTable[p].access := read;
Unlock(PTable[p]1.lock);

Read server:
Lock(PTable[p 1.1lock);
IF I am owner THEN BEGIN
PTable{ p].copyset :=

CHAPTER 2. MEMORY COHERENCE 42

PTable[p].copyset U [RequestNode 1;
PTable[p].access := read;
send p;
END; N
Unlock(PTablel p].lock);

Write fault handler:
Lock(PTable[p].lock);
broadcast to get p for write;
Invalidate(p, PTable[p].copyset);
PTable[p].access := write;
PTable[p].copyset := {};
PTable[p].owner := self;
Unlock (PTablel p].lock);

Write server:
Lock(PTable[p].lock);
IF I am owner THEN BEGIN
send p and PTable[p].copyset;
PTable[p].access := nil;
END;
Unlock (PTablel[p].lock);

The simplicity of this approach is appealing. VYet, the correctness of the
algorithm is not obvious at first. Consider the case in which two write faults
to the same page happen simultaneously on two processors P, and P,. When
the owner of the page, P;, receives a broadcast request from Py, it gives up
its ownership but P, has not yét received the message granting ownership. At
this point, P, sends its broadcast request and there is no owner. But this is
not a problem because P;’s message is queued on P, waiting for the lock on
the page table entry; after P, receives ownership, the lock will be released, and
Pp’s message will then be processed by P,.

A read page fault causes a broadcast request that will be recieved by N —1
processors but replied to by only one of them. The cost for a read page fault
is:

N-1
Crcad(i) =2C, +C, +‘® C:.

i=1

CHAPTER 2. MEMORY COHERENCE 43

The cost for a write page fault is the same, plus the overhead of an invalidation:

N-1
Curite(i) = 2C, + C. + Cy(m) + P C,.

i=1

The total cost of page faults on processor ¢ is given by:

Clolal(i) = (fr(z) + fw(l))Ca + Cn'nu(i) + rinu(i)cr + rp(i)ca (26)
N
+2_(£:6) + fuli))C-.

Since the iterated sum dominates the total cost, the work on all processors is
fairly balanced in this algorithm. For large NV, of course, this algorithm per-
forms poorly because all processors have to respond to each broadcast request,
slowing down the computation speed on all processors.

My experiments show that the cost introduced by the broadcast requests is
substantial when N = 4. A parallel program with many read and write page
faults will not perform well on a shared virtual memory system based cn a

broadcast distributed manager algorithm.

2.6.3 A Dynamic Distributed Manager Algorithm

The heart of a dynamic distributed manager algorithm is to keep track of the
ownership of all pages in each processor's local PTable. To do this, the owner
field is replaced with another field, probOwner, whose value can be either nil
or the “probable” owner of the page. The information that it contains is just
a hint; it is not necessarily correct at all times, but if incorrect it will at least
provide the beginning of a sequence of processors through which the true owner
can be found. Initially, the probOwner field of every entry on all processors is
set to some default processor that can be considered the initial owner of all
pages. It is the job of the page fault handlers and their servers to maintain this
field as the program runs.

In this algorithm a page does not have a fixed owner or manager. When

a processor has a page fault, it sends a request to the processor indicated by

CHAPTER 2. MEMORY COHERENCE 44

the probOuwner field for that page. If that processor is the true owner, it will
proceed as in the centralized manager algorithm. If it is not, it will forward the
request to the processor indicated by its probOwner field. When a processor
forwards a request, it need not send a reply to the requesting processor. The
protocol of forwarding requests will be discussed in Chapter 4.

The probOwner field changes on a write page fault as well as a read page
fault. As with the centralized manager algorithms, a read fault results in mak-
ing a copy of the page, and a write fault results in making a copy, invalidating
other copies, and changing the ownership of the page. The probOwner field is
updated whenever:

e a processor receives an invalidation request,

® a processor relinquishes ownership of the page, which can happen on a

read or write page fault, or

e a processor forwards a page fault request.

In the first two cases, the probOwner field is changed to the new owner of the
page. In the last case, the probOwner is changed to the original requesting
processor, which will become the true owner in the near future. The algorithm

is as follows:
Algorithm 2.4 DynamicDistributedManager

Read fault handler:
Lock(PTable[p].lock);
ask PTable[p].probOwner for read access to p;
PTable[p].probOwner := self;
PTable[p 1.access := read;
Unlock{ PTable[p }.lock);

Read server:

Lock(PTable[p 1.lock);

IF I am owner THEN BEGIN
PTable[p].copyset

:= PTable[p].copyset U {RequestNode};

PTable[p].access := read; .
send p and PTable[p].copyset;
PTable[p].probOwner := RequestNode;

CHAPTER 2. MEMORY COHERENCE 45

END

ELSE BEGIN
forward request to PTable[p].probOwner;
PTable[p].probOwner := RequestNode;
END;

Unlock(PTable{ p J.lock);

Write fault handler:
Lock(PTable[p].lock);
ask PTable[p].probOwner for write access to page p;
Invalidate(p, PTable[p].copyset);
PTable[p].probOwner := self;
PTable[p].access := write;
PTable[p].copyset := {};
Unlock(PTable[p].lock);

Write server:

Lock(PTable[p]1.lock);

IF I am owner THEN BEGIN
PTable[p].access := nil;
send p and PTable[p].copyset;
PTable[p].probOwner := RequestNode;
END

ELSE BEGIN
forward request to PTable[p].probOwner;
PTable[p].probOwner := RequestNode;
END;

Unlock(PTable[p].lock);

Invalidate server:
PTable[p].access := nil;
PTable[p].probOwner := RequestNode;

The two critical questions about this algorithm are whether forwarding re-
quests eventually arrive at the true owner and how many forwarding requests
are needed. In order to answer these questions it is convenient to view all the
probOwners of a page p as a directed graph G, = (V, E,) where V is the set of
processor numbers 1,...,N, |E,| = N, and an edge (z,5) € E, if and only if
the probOwner for page p on processor 7 is j.

In the following, I first show some properties of the probOwner graph by

CHAPTER 2. MEMORY COHERENCE 46

assuming that page faults are generated and processed sequentialiy. In other
words, it is assumed that if processor ¢ has a fault on page p, then no other
processor has a fault on page p until processing the page fault on processor ¢
is complete. I then show the correctness of the concurrent page fault case by
reducing an arbitrary concurrent page fault case to a sequential case.

Lemma 2.1 If page faults of page p occur sequentially, every probOwner graph
G, = (V, E,) has the following properties:

1. there is ezactly one node ¢ such that (¢,%) € Ep;

2. graph G, = (V, Ep — (4,1)) 1s acyclic; and

3. for any node z, there is exactly one path from x to 1.

Proof: By induction on the number of page faults on page p. Initially, all
the probOwners of the processors in V are initialized to a default processor.
Obviously, all three properties are satisfied.

After k page faults, the probOwner graph G, satisfies the three properties
as shown in Figure 2.6(a). There are two cases when a page fault occurs on
processor j.

1. If it is a read page fault, the path from j to ¢ is collapsed by the read fault

handler and its server in the algorithm such that all the nodes on the path
now point to j (Figure 2.6(b)). The resulting graph satisfies 1 since (¢, 1)
is deleted from E, and (j,) is added into E,. It satisfies 2 because the
subgraphs g;,gu, - - -, g, 9 are acyclic and they are not changed. For any
node z € V, there was exactly one path to . Suppose the first node in
the path (in the node set {j,u,...,v,7}) is y. The edge from y is changed

to (y,7), so there is no other path from y to j.

w

If it is a write page fault and there is no read-only copy of page p, then
the resulting graph is the same as the read page fault case. If it is a
write page fault and there are r read-only copies on processor vy,...,v,,
in addition to collapsing the path from s to ¢, the invalidation procedure
makes nodes vy,...,v, point to j (Figure 2.6(c)). The resulting graph
satisfies 1, since (7,¢) is deleted from the graph and (7,7) is added in. A

CHAPTER 2. MEMORY COHERENCE

Figure 2.6: Induction of a probOwner graph.

47

CHAPTER 2. MEMORY COHERENCE 48

subgraph g, is not equal to g, only if there is a node w in g, such that
w € {v1,...,v,}. However, g5 is acyclic because making w point to 7 will
not isolate the subgraph g,, from g,. Hence, the subgraphs 952901l g
and gy,,..., g, are acyclic. Thus, the resulting graph satisfies 2. Similar
to the read fault case, any node 2 € V had exactly one path to i. Suppose
that the first node in the path (in the node set {j,u,...,v,1, YiyeoosUp})
is y. The edge from y is changed to (y, 4), so there is no other path from
y to J.
O
Lemma 2.1 shows that any page fault can reach the true owner of the page
if the page faults of the same page are processed sequentially. This shows the
correctness of the'algorithm in the sequential case.
The worst-case number of forwarding messages for the sequential case is
given by the following corollary:
Corollary 2.1 In the N-processor shared virtual memory system, tt will take
at most N —1 messages to locate a page if page faults are processed sequentially.
Proof: By Lemma 2.1, there is only one path to the true owner and there is no
cycle in the probOwner graph. So, the worst-case occurs when the probQuner

graph is a linear chain:

Ep = {(v1,v2), (v2,v3),...., (vn-1,08), (vn, vx)}

in which case a fault on processor v; will generate IV — 1 forwarding messages
in finding the true owner vy. O

At the other extreme, we can state the following best-case performance
(which is better than any of the previous alorithms):
Lemma 2.2 There ezists a probOwner graph and page fault sequence such that
the total number of messages for locating N different owners of the same page
1s N,
Proof: Such a situation exists when the a prob_owner graph is the same chain

that caused the worst-case performance in Corollary 2.1. OJ

CHAPTER 2. MEMORY COHERENCE 49

It is interesting that the worst-case single-fault situation is coincident with
the best-case N-fault situation. Also, once the worse-case situation occurs,
all processors know the true owner. The immediate question that now arises
is what is the worst-case performance for Ii faults to the same page in the
sequential case. The following lemma answers the question:

Lemma 2.3 For an N-processor shared virtual memory, using the dynamic
distributed manager algorithm, the worst-case number of messages for locating
K owners of a single page is O(N + K log N) in the sequential case.

Proof: The algorithm reduces to the type-0 reversal find operation for solv-
ing the set union-find problem [Tarjan 84]'. For a probOwner graph G, =
(V, E;), define the node set V to be the set in the set union-find problem and
the node ¢ € V' such that (¢,7) € E, to be the canonical element of the set. A
read page fault of page p on processor j is then a type-O reversal find opera-
tion Find(7,V) in which the canonical element of the set is changed to 5. A
write page fault of page p on processor j is a type-0 reversal find operation plus
the collapsing (by an invalidation) of the elements in the copy set of the page.
Although the collapsing changes the shape of the graph, it does not increase
the number in the find operation. According to the proof by Tarjan and Van
Leeuwen [Tarjan 84, the worst-case number of messages for locating K owners
of a page is O(N + Klog N). O

Note that without changing the ownership on a read page, the algorithm still
works correctly, but the worst-case bound will be increased when N is large. In
that case, the total number of messages for locating K owners depends on the
configuration of the probOwner graph. If the graph is a chain, then it can be as
bad as O(KN). If the graph is a balanced binary tree, it will be O(Klog N).
If the graph is at a state in which every processor knows the owner, it will be
O(K).

All the lemmas and corollaries shown above are for the sequential page fault

!The reduction to set union-find was motivated by- Fowler’s analysis on finding objects
[Fowler 86], though the reduction methods are different.

CHAPTER 2. MEMORY COHERENCE 50

case. The problem is that in practice the sequential page fault case is unlikely
to happen often, so it is necessary to study the concurrent page fault case. An
important property in the algorithm is the atomicity of each fault handler or
its server provided by the locking and unlocking mechanism. For convenience,
we state it in the following lemma:

Lemma 2.4 If a page fault for page p traverses a processor, then other faults
for p that need to travers the processor, but haven't yet, cannot be completed
untsl the first fault completes.

Proof: Suppose processing a page fault that occured on processor ¢ has tra-
versed processor u. The server of the fault handler atomically set the probOwner
field in the page table entry on processor u to ¢. The requests for processing
other page faults will be forwarded to processor ¢. Since the page table en-
try on processor ¢ is locked, these requests will be queued on processor ¢ until
processing the page for processor ¢ is complete. O

My intention is to show that there exists a sequential page fault processing
sequence that matches any given concurrent page fault processing so that the
results for the sequential case can apply to the concurrent case. Processing
concurrent page faults that occur on processor vj,..., v (it is possible that
v; = v; when ¢ # j) is said to be matched by a sequential processing of a K
page fault sequence (v1,...,v) if processing the page fault on processor v; in
the concurrent case traverses the same processors in the same order as in the
sequential processing case.

Consider an example in which the owner of a page is v and page faults occur
on processor ¢ and processor j concurrently. Suppose that the first common
node in the probOwner graph the requests for processing both page faults need
to traverse is « (Figure 2.7(a)). If the request from processor 7 traverses pro-
cessor u first, the algorithm sets the probOwner field in the page table entry
on processor u to . When the request from processor j arrives at processor
u, it will be forwarded to processor i, but the page table entry on processor

¢ is locked until processing the page fault for processor 7 is complete. So, the

CHAPTER 2. MEMORY COHERENCE 51

request from processor j is queued at the page table entry of processor 7, while
the request from processor ¢ is traversing the rest of the path from u to v. The
probOwner graph when the processing is complete is shown in Figure 2.7(b).
When the lock on processor ¢ is released, the request from processor j continues.
The resulting graph is shown in Figure 2.7(c). Thus, the request from processor
¢ traversed the path ¢,...,u,...,v and the request from processor j traversed
the path j,...,u,7. This is equivalent to the case in which the following events
occur sequentiaily:

¢ a page fault occurs on processor ¢;

o the system processes the page fault;

e a page fault occurs on processor j; and

the system processes the page fault.
The matched sequential page fault processing sequence is therefore (z,4). Ob-
viously, if the request from processor j traverses processor u first, then the

matched sequential page fault processing sequence is (7,7).

Lemma 2.5 For any concurrent page fault processing, there ezists a matched

sequential page fault processing sequence.

Proof: By induction on the number of page faults. For one page fault process-
ing, it is obviously true. For k + 1 page fault processings, we look at a page
fault on processor 7. By Lemma 2.4, the following is true:

1. k, page fault processing activities are dohe before processing the page

fault for processor ¢ is complete;

[+

- there are k; page fault processing activities after processing the page fault
for processor ¢ is complete; and
3. ki +ky=k.
According to the assumption, there is a matched sequential page fault se-
quence (uy,...,uy,) for the k) concurrent page fault processings and there is a

matched sequential page fault sequence (v,. .. ,.vk,) for the k2 concurrent page

CHAPTER 2. MEMORY COHERENCE

i

(c)

Figure 2.7: Two concurrent page faults.

CHAPTER 2. MEMORY COHERENCE 53

fault processings. The matched page fault processing sequence is therefore
(Uryeony ks 5,010, 0k,). O

This lemma not only enables us to apply all the results for the sequential
case to the general case, but also shows that the find operations in the set-
union problem can be done in paraliel if each find can be broken into small
atomic operation in the same manner as this algorithm. The correctness of the
algorithm in the general case is described by the following theorem:
Theorem 2.2 A page fault on any processor reaches the true owner of the page
using at most N — 1 forwarding request messages.
Proof: By Lemma 2.5 and Corollary 2.1. 0O

The worst-case performance of Ii page faults is then given by:
Theorem 2.3 Fo'r an N-processor shared virtual memory, using the dynamic
distributed manager algorithm, the worst-case number of messages for locating
K owners of a single page is O(N + K log N).
Proof: By Lemma, 2.5 and Lemma 2.3. O

Corollary 2.2 Using the dynamic distributed manager algorithm, if q proces-
sors are using a page, an upper bound on the total number of messages for
locating K owners of the page is O(p+ K log q) if all contending processors are

tn the g processor set.

This is an important corollary, since it says that the algorithm does not
degrade as more processors are added to the system, but rather degrades (log-
arithmically) only as more processors contend for the same page.

In the dynamic distributed manager algorithm, only the total cost of page

faults on a processor is meaningful:

Clalal(i) = (fr(z) + fw(i))(ca + Cr) + Cinv(i) + rinv(i)cr (27)
+1,(6)C, + £1(3)C-

The sum of f;(¢), which is the total number of forwarding messages, is bounded

CHAPTER 2. MEMORY COHERENCE 54

as follows:
N

N
>_ spwa(i) < e(log N)3(£(3) + fu(4))

i=1 i=l
where ¢ is a constant. The bound is a rather weak one because it ignores the
fact that an invalidation operation can collapse all the read copy paths in the
graph. Our experiments show that usually few processors are using the same
page at the same time, that is, for a given time slot, p << N. This means
that the right hand side of Equation 2.6.3 is a weak bound. This also means
that the dynamic distributed manager algorithm has the potetial to implement
a shared virtual memory system on a large-scale multiprocessor system.

Note that in Algorithm 2.4, the read fault handler and its server change
the probOQwner graph in the same way as the write fault handler and its server
to the probOwner graph except that the write fault handler does invalidation
according to the copyset field. The algorithm is designed for making proving
theorems easier. For a real implementation, the read fault handler and its

server should be slightly changed to get better performance:

Read fault handler:
Lock(PTablel p J].lock);
ask PTable[p].probOwner for read access to p;
PTable[p].probOwner := ReplyNode;
PTable[p].access := read;
Unlock(PTable[p 1.lock };

Read server:

Lock(PTable[p].lock);

IF T am owner THEN BEGIN
PTable[p].copyset

:= PTable[p].copyset |J {RequestNode};

PTable[p].access := read;
send p to RequestNode;
END

ELSE BEGIN
forward request to PTable[p].probOwner;
PTable[p].probOwner := RequestNode;
END;

Unlock(PTable[p 1.lock);

CHAPTER 2. MEMORY COHERENCE 55

The modified read fault handler and its server stil! compress the access path
from the faulting processor to the owner, but they do not change the ownership
of 2 page but only change its probOwner field. The modified algorithm reduces
one message for each read page fault, an obvious improvement. For the modified
algorithm, the worst case number of messages for locating K owners of a single
page is difficult to prove in a clean way because the read fault handler and
its server behave the same as a pure forwarding address scheme which can be
reduced to the set union-find problem of compressing path with naive linking
(Fowler 86|, while the write fault handler and its server behave differently. This
is precisely why the modified algorithm was not presented in the first place.

The algorithm proposed in this section needs a broadcast or multicast fa-
cility only in the invalidation operation. If the invalidation is done by sending
individual messages to the copy holders, there is no need to use the broad-
cast facility at all, while still reaping the benefits of the dynamic distributed

manager algorithm.

2.6.4 An Improvement by Using Fewer Broadcasts

In the previous algorithm, at initialization or after a broadcast, all processors
know the true owner of a page. The following theorem gives the performance

for K page faults on different processors in this case:

Theorem 2.4 After a broadcast request or a broadcast invalidation, the to-
tal number of messages for locating the owner of a page for K page faults on

different processors is 2K — 1.

Proof: This can be shown by the transition of a probOwner graph after a
broadcast. The first fault uses 1 message to locate a page and after that every
fault uses 2 messages. O

This theorem suggests the possibility of further improving the algorithm by
enforcing a broadcast message (announcing the true owner of a page) after every

K page faults to a page. In this case, a counter is needed in each entry of the

CHAPTER 2. MEMORY COHERENCE 56

page table, and is maintained by its owner. (It is interesting to note that when
K = 0 this algorithm is functionally equivalent to the broadcast distributed
manager algorithm, and when K = N — 1 it is equivalent to the unmodified

dynamic distributed manager algorithm.) The algorithm is as follows:
Algorithm 2.5 DynamicDistributedBroadcast

Read fault handler:
Lock(PTable{ p].lock);
ask PTable[p].probOwner for read access to p
and a copy of p:
PTable[p].probCwner := ReplyNode;
PTable[p].access := read;
Unlock(PTable[p].lock);

Read server:

Lock(PTable[p].lock);

IF I am owner THEN BEGIN
PTable[p].copyset

:= PTable[p].copyset {J {RequestNode};

PTable[p].access := read;
PTable[p].counter := PTable[p].counter + 1;
send p to RequestNode;
END

ELSE BEGIN
forward request to PTablel p].prob0wner;
PTable[p].probOwner := RequestNode;
END;

Unlock(PTable[p].lock);

Write fault handier:
Lock(PTablel[p].lock);
ask PTable[p].probOwner for write access to p
and p's copyset;
Invalidate(p);
PTable[p].probOwner := self;
PTable[p].access := write;
PTable[p].copyset := {};
Unlock(PTable[p].lock);

Write server:
Lock(PTablel p].lock);

CHAPTER 2. MEMORY COHERENCE 57

IF I am owner THEN BEGIN
PTable[p].access := nil;
send p, PTable[p].copyset, and PTable[p].counter;
PTable[p].probOwner := RequestNode;
END
ELSE BEGIN
forward request to PTable[p].probOwner;
PTable[p].probOwner := RequestNode;
END;
Unlock(PTablel p 1.lock);

Invalidate(p):
IF (PTablel p].counter > K)
OR (Size(PTable[p].copyset > L) THEN
broadcast invalidation;
ELSE
invalidate according to PTable[p].copyset;

Invalidate server:
PTable[p].access := nil;
PTable[p].probCwner := RequestNode;

Note the counter L used in the invalidation procedure; whether a broadcast
invalidation message is sent depends on whether the number of copies of a page
reaches L. The value L can be adjusted experimentally to improve system
performance.

The total cost of page faults Ciai(2) in this variation of the dynamic dis-
tributed manager algorithm is the same as in the original algorithm except for
the values of rin,(7) and ssuq(z). The function r;,,(¢) may be greater than be-
fore, but it is not big because a broadcast invalidation can be sent only after

every N page faults. It is given by:
N N
Zrinv(z Z fr 1‘) + "fw(‘l))
i=1 =1

In the case of Theorem 2.4, the function $;,q(¢) is bounded by a small

number:

zsfwd <Z(fr +fw "N

i=1

CHAPTER 2. MEMORY COHERENCE 58

because it only shows the performance for X page faults on distinct processors.
On the average, without considering the cost of the broadcast message, this
algorithm takes a little less than 2 messages to locate a page after a broadcast
request or broadcast invalidation in this special case.

In order to choose the value of KU, it is necessary to consider the general
case in which the same processor may have any number of page faults. The
above section has shown that the worst-case number of messages for locating
K owners tor a single page is O(N + Rlog N), but our intuition says that
the performance of I page faults right after a broadcast message should be
better because in the starting probOwner graph, all the processors know the
true owner.

Since it is difficult to find a function that describing the relationship between
K and N for the general case, I used two simulation programs to show the
relationship in two different cases: approximated worst-case and approximated
random-case. The initial probOwner graph used in both programs is the graph
after a broadcast in which all the processors know the true owner. The programs
record the number of messages used for each find (locating an owner) operation.

The first program approximates the worst case by choosing a node with
the longest path to the owner at each iteration. Table 2.2 shows the average
number of messages for each find operation for K = N/4, K = N/2, K = 3N/4,
and K = N. For each N, the program starts with the same initial graph (the
probOwner graph after a broadcast message). The table shows that the average
number of messages steadily increases as N gets large. Although picking the
node with the longest path does not always generate the worst-case probOwner
graph, my experiments show that the program actually converges when K is
very large. For example, the average number of messaies becomes stable when
N =64 and K > 1024. Whether the converged case is the worst case is an

open problem.

The second program approximates a random case by choosing a node ran-

domly at each iteration. The average number of messages for each find opera-

CHAPTER 2. MEMORY COHERENCE 59

Number of nodes Average number of messages / find
(N) K=N/4|K=N/2|K=3N/4|K=N
4 1 1.5 1.3 1.75
8 1.5 1.75 2 2.13
16 1.75 2.13 2.42 2.63
32 2.13 2.63 2.83 3
64 2.63 3 3.25 3.45
128 3 3.45 3.71 3.88
256 3.45 3.88 4.14 4.35
512 3.88 4.35 4.62 4.8
1024 4.35 4.8 5.05 5.263

Table 2.2: Longest-path-first finds

tion is shown in Table 2.3. In order to be objective, the table is produced by
running the program four times and computing the average values among all
the executions. Comparing Table 2.2 with Table 2.3, note that, on average,

random finds spend less number of messages.

To choose an appropriate value of I{, the two tables should be used together
with the informatiqn about the average number of contending processors be-
cause the performance of the dynamic distributed manager algorithm is only
related to such a number rather than the number of processors in the system
(Corollary 2.2).

2.6.5 Distribution of Copy Sets

Note that in the previous aigorithm, the copy set of a page is used only for
the invalidation operation induced by a write fault. The location of the set
is unimportant as long as the algorithm can invalidate the read copies of a
page correctly. Further note that the copy set field of processor ¢ contains j if

processor j copied the page from processor 7, and thus the copy set fields for a

CHAPTER 2. MEMORY COHERENCE 60

Number of nodes Average number of messages / find
(N) K=N/4|K=N/2| K=3N/4|K=N
4 1 1.5 1.67 1.75
8 1.5 1.75 1.99 2.08
16 1.75 1.96 2.22 2.53
32 1.93 2.39 2.79 29
64 2.09 2.78 2.9 3.12
128 2.06 2.68 2.8 3.16
256 2.2 2.717 3.18 3.39
512 2.46 3.09 3.32 3.56
1024 2.34 3.08 3.34 3.64

Table 2.3: Random finds

page are subsets of the original copy set.

These facts suggest an alternative to the previous algorithms in which the
copy set data associated with a page is stored as a tree of processors rooted
at the owner. In fact, the tree is bidirectional, with the edges directed from
the root formed by the copy set fields, and the edges directed from the leaves
formed by problOwner fields. The tree is used during faults as follows: A read
fault collapses the path up the tree through the probOwner fields to the owner.
A write fault invalidates all copies in the tree by inducing a wave of invalidation
operations starting at the owner, propagating to the processors in its copy set,
which in turn send invalidation requests to the processors in their copy sets,
and so on.

The following algorithm is a modified version of the original dynamic dis-
tributed manager algorithm:

Algorithm 2.6 DynamicDistributedCopySet

Read fault handler:
Lock(PTablel p 1.1lock);
ask PTable[p].probOwner for read access to p;

CHAPTER 2. MEMORY COHERENCE

PTable[p].problOwner := ReplyNode;
PTable[p].access := read;
Unlock(PTablel[p].lock);

Read server:

Lock(PTable[p 1.lock);

IF PTablel p].access # nil THEN BEGIN
PTable[p].copyset

:= PTable[p].copyset U {RequestNode};

PTable[p].access := read;
send p;
END

ELSE BEGIN
forward request to PTable[p].probOwner;
PTable[p].probOwner := RequestNode;
END;

Unlock(PTable[p].lock);

Write fault handler:
Lock(PTablel p 1.lock);
ask PTable[p].probOwner for write access to p;
Invalidate(p, PTablel p].copyset);
PTable[P].probOwner := self;
PTable[p].access := write;
PTable[p].copyset := {};
Unlock(PTablel p].lock);

Write server:

Lock(PTablel[p 1.lock);

IF I am owner THEN BEGIN
PTablel p].access := nil;
send p and PTable[p].copyset;
PTable{ p].probOwner := RequestNode;
END

ELSE BEGIN
forward request to PTable[p].probOwner:;
PTable[p].probOwner := RequestNode;
END;

Unlock(PTable[p].lock);

Invalidate server:
IF PTablei p].access # nil THEN BEGIN

61

CHAPTER 2. MEMORY COHERENCE 62

Invalidate(p, PTable[p].copyset);
PTable[p].access := nil;

PTable[p].probOwner := RequestNode;
PTable[p].copyset := {};

END;

Since a write page fault needs to find the owner of the page, the lock at the
owner synchrenizes concurrent write page fault requests to the page. If read
faults on some processors occur concurrently, the locks on the processors from
which those faulting processors are copying synchronize the possible conflicts
of the write fault requests and read fault requests. In this sense, the algorithm
is equivalent to the original one.

Distributing copy sets in this manner improves system performance for the
architectures that do not have a broadcast facility in two important ways. First,
the propagation of invalidation messages is usually faster because of its “divide
and conquer” effect. If the copy set tree is perfectlv balanced, the invalidation
process will take time proportional to logm for m read copies. This faster
invalidation response shortens the time for a write fault. '

‘Secondly, and perhaps more importantly, a read fault now only needs to find
a single processor (not necessarily the owner) that holds a copy of the page.
To make this work, recall that a lock at the owner of each page synchronizes
concurrent write faults to the page. A similar lock is now needed on processors
having read copies of the page to synchronize sending copies of 1he page in the
presence of other read or write faults.

Overall this refinement can be applied io any of the foregoing distributed
manager algorithms, but it is pasiicularly useful on a multiprocessor lacking a

broadcast faciliiy.

2.7 Conclusion

This chapter has studied two classes of algorithms for solving the memory

coherence problem—the centralized manager and the distributed manager—

CHAPTER 2. MEMORY COHERENCE 63

and both of them have many variations.

The centralized algorithm is straightforward and easy to implement, but it
may have a traffic bottleneck at the central manager when there are many read
and write page faults.

The fixed distributed manager algorithm alleviates the bottleneck, but, on
average, a processor still needs to spend about two messages to locate an owner.

The dynamic distributed manager algorithm and its variations seem to have
the most desirable overall features. As mentioned in the chapter, the dynamic
distributed manager algorithm may only spend one message to locate an owner.
On the other hand, when a distributed manager algorithm does not have such
a situation, Theorem 2.4 shows that by using fewer broadcasts, the average
number of messagés for locating a page is a little less than two for a common
case. Further refinement can also be done by distributing copy sets.

In general, dynamic distributed manager algorithms will outperform other
methods when the number of processors sharing the same page for a short
period of time is small, which is the normal case. The good performance of the
dynamic distributed manager algorithms shows that it is possible to apply it

to an implementation on a large-scaled multiprocessor.

Chapter 3
Process Management

The last chapter concentrated on the solutions to the memory coherence prob-
lem in implementing a shared virtual memory mapping. One of the important
goals of such a mapping is to get processes of a program to execute on different
processors in parallel. To do so, the appropriate process manager must be inte-
grated with the memory mapping managers, which requires a simple operating
system on top of the shared virtual memory.

Although the interface of such a simple operating system looks much like
that of a traditional operating system for a uniprocessor, they are quite dif-
ferent. In a uniprocessor system, all processes share the same processor. In a
shared virtual meniory system, processes share a number of processors, which
requires an effective processor-allocation strategy at compile time and run time.

Most of the work on process scheduling for tightly coupled multiprocessors
with physically shared memories has focused on a centralized scheduling mecha-
nism because the communication cost in a tightly coupled multiprocessor is low
[Jones 79, Jones 80, Ousterhout 80, Emrath 85, Tuomenoksa 85). Other work
has assumed that the relationship between processes is known and can be used
to find a scheduling [Muntz 70, Coffman Jr. 72, Coffman, Jr. 73, Gonzalez 78].

Most of the work on process scheduling for loosely coupled multiprocessors

has concentrated on scheduling processes having different address spaces. Since

64

CHAPTER 3. PROCESS MANAGEMENT 65

an efficient process migration implementation is hard to achieve for separate
address spaces, most of the process scheduling algorithms are based on the
assumption that once a process runs on one processor, it will not be migrated
to another.

This chapter discusses the related data structures of processes, process mi-
gration, process scheduling mechanisms and dynamic load balancing strate-
gies. The chapter describes a simple, uniform process management design—
a distributed process scheduling mechanism with some simple load balancing
strategies—that fits in various existing architectures and supports efficient pro-
cess migration and effective process scheduling. Such a design is not only con-
ceptually interesting but also easy to implement. Since process management
is a classical topic, this chapter only focuses on the issues related to a shared
virtual memory system on loosely coupled multiprocessors.

For simplicity, the discussion in the chapter assumes that there is only one
address space in the whole shared virtul memory system. Once one knows
how to deal with one address space, he can easily extend the technique to
multiple address spaces. The issues of implementing multiple address spaces

are discussed in chapter 4.

3.1 Process Control

3.1.1 Processes

A process is a concurrent execution unit of a program in the shared virtual
memory system. It has an address space, a stack, a process control block
(PCB), and a process identifier (PID).

The address space of a process consists of two portions, the shared mem-
ory portion and the private memory portion (Figure 3.1). The shared memory
portion is shared by all the processes and its memory coherence is maintained

by the shared virtual memory mapping managers described in the last chapter.

CHAPTER 3. PROCESS MANAGEMENT 66

Memory heap and the stack of the process are usually stored in the shared
memory portion. The private memory portion is used to store processor de-
pendent data; it is shared by all processes on the same processor. The division

of the two portions is determined at the system initialization stage.

Shared
memory
portion

Private
memory
portion

Figure 3.1: Process address space.

Like traditional operating systems, the data structure of a process for the
operating system kernel is a PCB that records the information of a process, such
as the layout of the process address space, register values, program counter,
process state, and statistical information. A process needs at least three states:
running, ready, and suspended. .

All processes have unique PIDs in a shared virtual memory system. When
a process control primitive in the system operates on some processes, it refers
to them by PIDs. Since PIDs are used so often in process control primitives,
it is im;;orta.nt to have an efficient mapping between a PID and its associated
PCB.

One way to generate unique PIDs for a shared virtual memory system is
to use a semi-centralized PID generator similar to the sequencer proposed by

Reed [Reed 79]. At the system initialization stage, the generator can generate

CHAPTER 3. PROCESS MANAGEMENT 67

many PID’s and buffer them cn all the processors so that a process creator can
usually find an unused PID without invoking the generator every time. The
association between PIDs and PCBs is then established by building a mapping
table that is replicated on all processors.

Another way to generate unique PIDs is to use the address of a PCB as its

PID. If PCBs are stored in the shared memory, the mapping is done by:
PID = address(PCB).

If PCB’s are stored in the private memory, the (unique) processor number is
needed in addition to the address of a PCB:

PID = (processor, address(PCB)).

This method eliminates the complexity of generating unique PIDs because the
PID of a process is automatically generated at the time 2 piece of storage is
allocated for its PCB. They are unique as long as the memory allocation works
correctly.

In general, using the address of a PCB as a process PID is the more at-
tractive of these two approaches because of its simplicity and efficiency. The
drawback of using the address of a PCB is that a PID needs as many bits
as an address in the shared virtual memory system (or the address together
with a processor name if PCBs are stored in private memories); whereas the
semi-centralized PID generator approach only requires log & bits where k is the
maximum number of processes allowed in the system. Of course, the semi-
centralized PID generator approach requires building a PID mapping table,

which requires space for the table and also adds complexity in maintaining it.

3.1.2 Primitive Operations

The client interface of process control is a set of primitives similar to those in a
traditional operating system for a uniprocessor... There are two differences. One

is that each process in the shared virtual memory system is lsghtwesght, that is,

CHAPTER 3. PROCESS MANAGEAENT 68

all processes share the same address space and the creation time of a process
is as short as making a few procedure calls [Levin 86]. The other difference is
that these lightweight processes can truly run on different processors in parallel
and any process can migrate from one processor to another if necessary.

The process management needs two kinds of primitive operations: process
control and process synchronization. The following is a small basic set of process
control primitives:

» Create — Create a process. It is like a procedure call except that it
creates a parallel thread. This operation should be no slower than a few
procedure calls.

® join — Join a number of processes. This operation allows a process to
suspend itself until the specified processes terminate.

® migrate — Move a process from one processor to another. This operation
gives programmers control over processes at run time to allow a manually-
controlled process distribution of a parallel program.

¢ terminate — Kill a process. This operation will notify all awaiting pro-
cesses that execute a join operation.

Tlie first two kinds of primitives, create and join, support the paradigm of fork
and join [Dennis 66, Conway 63, Mitchell 79] or cobegin ! and coend. They
can also be used directly by programmers or by parallel programming language
compilers to partition a problem into small, parallel, executable pieces and to
synchronize them in a primitive way.

Synchronization primitives serve two main purposes: mutual exclusion of
processes on shared data structures, and ordering of asynchronous events. Any
one of the favored mechanisms based on global memory, such as semaphores
[Dijkstra 68], monitors [Hoare 74, and eventcounts [Reed 79] may be sufficient.
Synchronization mechanisms based on message passing can also be implemented

easily in such a system because message passing can be simulated by shared

! This was first called parbegin {Dijkstra 68].

CHAPTER 3. PROCESS MANAGEMENT 69

memory.

3.1.3 Process Migration

Process migration is the relocation of a process from one processor to another.
Theoretical studies have shown that the performance of a system can be im-
proved by process migrations if the cost of a process migration is not expensive
[Stone 77, Bokhari 79, Robinson 79]. Several distributed operating systems
have considered process migration [Finkel 80, Rashid 81). DEMOS/MP actu-
ally has a process migration implementation based on message passing, but the
cost of a process migration is expensive [Powell 83].

Message passing based systems have a high cost for process migration be-
cause of the separate address spaces. When migrating a process, all the oper-
ating system resources allocated by the process have to be moved together; the
cost is that of moving all the process-related data via the communication link
between the two processors. In the case where a process has a few opened ports
and files, the pending messages and file access control blocks need to be trans-
fered. Furthermore, the code and the stack of the process have to be moved
because there is no easy way of translating the contents of different address
spaces efficiently on the fly. To summarize, a process migration on a message
passing system needs to: .

1. create a PCB on the destination processor,

2. copy the code of the process to the destination processor,
3. allocate a stack on the destination processor and copy the current stack
to it, and
4. copy all system data structures related to the process, such as file control
blocks and message ports.
Figure 3.2 shows a process migration between separate address spaces.
Process migration in the shared virtual merhory system is much simpler be-

cause all of the processes share the same address space. If resource control data

CHAPTER 3. PROCESS MANAGEMENT 70

Old process Raw process

.......................

.......................

.......................

.......................

..

: PCB ; + RawPCB |
Migrated process New process

:: Code :

Stack :

iForwa.rding pointeri : New PCB !

...

Figure 3.2: A process migration between address spaces.

structures are stored in the shared virtual memory, there is no need to move
them because the memory pages keeping the data structures will be paged in as
the migrated process uses them. A process migration is then just like a normal
context switch except that the context will be restored on a remote processor.
Figure 3.3 shows a process migration in the shared virtual memory system.
Note that not all the processes need to migrate in the shared virtual memory,

so only user processes created by using the process primitive are migratable.

Process migration in the shared virtual memory systems versus that in mes-

CHAPTER 3. PROCESS MANAGEMENT 71

Ready queue Ready queue
on processor i ON processor j

Ready queue Ready queue
on processor i on processor j

Figure 3.3: A process migration in a shared virtual memory system.

sage passing systems is analogous to lazy evaluation versus eager evaluation
[Friedman 76, Henderson 76, Baker 78]. In the shared virtual memory system,
a process migration never has to move more than necessary; whereas in mes-
sage passing systems, one has to move everything eagerly because there is no

underlying mechanism to support migration.

3.1.4 Process Scheduling

A process schedule is an assignment of which process should run on which
processor at each moment of time. The basic objective of process scheduling

for the shared virtual memory system is to schedule the processes of a program

S

CHAPTER 3. PROCESS MANAGEMENT 72

so that the program excecutes in minimal time.

Unlike tightly coupled multiprocessor systems, the communication cost in
the shared virtual memory system is relatively high; a process migration in the
sharcd virtual memory system may increase the execution time of a compu-
tation. For example, when two processes need to write to the same memory
page and both of them use it frequently, running the two processes on the same
processor may take less time than on different processors because the cost of
page moving may dominate the execution time. Process sychronization can
also increase the execution time. For example, suppose process p, and process
P2 are running on processor ¢ and j respectively, and p; is waiting for p, to ter-
minate. The notification of p,’s termination is a remote operation that requires
two messages, a send and a reply. But if p; and p; are on the same processor,
the cost of a notification is negligible. Therefore, the cost of synchronization
between p; and p, depends on where they reside.

It is helpful first to consider the spectrum of process scheduling algorithms
one may use for the shared virtual memory system. These algorithms may be
classified by process scheduling mechanisms and process scheduling disciplines,

as shown in Figure 3.1.

Scheduling mechanisms
Scheduling

disciplines

centralized distributed

nonpreemptive not appropriate not appropriate

preemptive yes yes

Table 3.1: Spectrum of Process scheduling.

There are two kinds of process scheduling mechanisms: centralized and dis-

CHAPTER 3. PROCESS MANAGEMENT 73

tributed. A centralized mechanism has a main scheduler that allocates proces-
sors for processes. A distributed process scheduling mechanism has a scheduler
on each processor. These schedulers need to negotiate with each other to sched-
ule processes.

A process scheduling discipline can be either preemptive or nonpreemptive.
It is preemptive if a process can be suspended and resumed under some con-
straint. It is nonpreemptive if once a process begins running, it runs until it
suspends itself. The implementation of a nonpreemptive scheduling discipline
is fairly straightforward.

It has been shown analytically that preemptive scheduling is more effec-
tive than non-preemptive (or processor-sharing) scheduling for multiprocessors
[Muntz 70]. With non-preemptive scheduling, a process that has a page fault
cannot proceed until it gets the page; preemptive scheduling would allow an-
other process to run when a page fault occurs. The cost of a page fault is usually
an order-of-magnitude more than a local context switch, and although it might
be roughly the same as a remote context switch (a process migration), it may
reduce page thrashing when more than two processes on different processors
want the same page.

A preemptive process scheduling mechanism on a uniprocessor consists of
four elements: a resource, a ready queue, a waiting queue, and a processing ser-
vice (CPU) as shown in Figure 3.4. The scheduling algorithm has two policies:
preemptive policy and queuing policy. The resource generates processes and
puts them into the ready queue according to the queuing policy, such that the
next process to be served is always at the head of the queue. The processing
service may suspend the running process, put it into waiting queue, and re-
sumes the process at the head of the ready queue. The processes in the waiting
queue will be moved into the ready queue when they are ready to run.

The preemption policy determines when a process should be suspended, nor-
mally for one of two reasons: (1) resource reqitest or (2) timeoui. A resource

request usually includes I/O request, process synchronization, and virtual mem-

CHAPTER 3. PROCESS MANAGEMENT 74

e —

Waiting queue

Preemption

Sources —_— Completion
||] CPU }— 80— &

\]

Queueing

Ready queune

Figure 3.4: Preemptive scheduling on one Drocessor.

ory paging. A timeout gives each process a time quota for each run, after which

it will be suspended.

The queuing policy is the essence of a scheduling algorithm. The following

is a list of some possible choices:
¢ dependency
e priority
o first-in-first-out (or round-robin)

¢ last-in-first-out

smallest-quota-first

¢ longest-waiting-first
The dependency approach queues processes according to their dependencies
such that process p, proceeds process p, if P2 depends on p; or if they are in-
dependent. This policy can be used by compilers of parallel programming lan-
guages built on top of the shared virtual memory system. The priority approach
assigns priorities to processes [Lampson 68]; the process with highest prority
being put in the front of the queue. Since priority can be changed dynamically,
this approach is flexible. First-in-first-out, last-in-first-out, smallest-quota-first

and longest-wasting-first are relatively straightforward.

CHAPTER 3. PROCESS MANAGEMENT 75

For a shared virtual memory system, load balancing is important because
it is a way to reduce the execution time of a program. Load balancing can be
done either at compile time, run time, or both. In compile-time load balanc-
ing, programmers or compilers allocate processors for processes statically. In
run-time load balancing (also called dynamic load balancing), processors are
allocated for ready processes at run-time. Effective run-time load balancing
could complement compile-time balancing, especially when the compile-time
balancing is not very good. Some problems might have quite different loads

based on their input data, and thus need run-time balancing.

3.2 Centralized Process Scheduling

3.2.1 A Single Ready Queue Mechanism

Figure 3.5 shows a centralized process scheduler for a shared virtual memory
system. The main scheduler has a single ready queue. The mechanism is similar
to that for uniprocessors. The main difference being that there is more than one
processing service in the system. The main scheduler allocates processors for
ready processes. This mechanism is suitable for tightly coupled multiprocessors

and has been used in many systems {[Emrath 85].

The main scheduler has a data structure, states, keeping track of the states
of all the processors. . Tt is maintained by the local schedulers and the main
scheduler. The local scheduler changes the state of a processor to “free” when
its running process is suspended for some reason. When the main scheduler
allocates a processor for a ready process, the processor state is changed to
“busy.”

When a process is suspended, its local scheduler will be invoked. When
a suspended process becomes ready, it will be inserted into the ready queue
according to the quening policy. Tile main scheduler is invoked when:

¢ a processor becomes free,

CHAPTER 3. PROCESS MANAGEMENT 76

Preemption
Completion
» CPU1 >
Preemption
Completion
cCeU2 |
Preemption
_— Completion
‘ - || CPU N -
Queueing —_

Ready queue

Figure 3.5: Centralized scheduling with one ready queue.

e a process becomes ready, or
e a time quota is filled.

The following is a simple scheduling strategy in which a local scheduler invokes

the main scheduler when a processor becomes free.
Algorithm 3.1 SingleQueueSchedule

Local scheduler:
states{ MyProcessor] := free;
invoke main scheduler;

Main scheduler:
LOOP BEGIN
wait for a free processor and non-empty ReadyQueue;
pid := TakeFrom(ReadyQueue);
i := AllocateProcessor(pid);

CHAPTER 3. PROCESS MANAGEMENT 7

IF i # nil THEN

Invoke(pid, i)
ELSE

put pid back into ReadyQueue;
END;

Processor allocation may fail if there is no free processor. In order to allocate
a processor optimally, the main scheduler may need the information about the
recources the processors currently have and the resources the invoked process
requires in the future. Since finding an optimal processor allocation is known to
be NP-complete when the number of processors is greater than one [Karp 72,
it is practical to use hueristic process scheduling strategies for large systems.

Here are some strategies for allocating processors:

. round—robin;

¢ original processor first,

¢ resource owner first, and

e priority.

Round-robin keeps the free processors in a queue and uses a first-in-first-out
strategy to choose a free processor. Original processor first attempts to find the
processor on which the process being invoked originally ran. Resource owner
first attempts to invoke a process on the processor that-has the resources the
process needs. The priority method assigns each processor a priority that can
be changed dynamically, and when invoking a process, the scheduler will choose
the processor with the highest priority. Combinations of the strategies above
are also worth considering.

As mentioned in Section 3.1.4, there are many possible queuing policies.
Since processor allocation strategies are somewhat orthogonal to queuing poli-
cies, it is also possible to develop many scheduling algorithms for the centralized
scheduling mechanism. The problem of which algorithm is the best for central-
ized process scheduling remains open.

Note that some of the remote process invocations involve process migrations

and some of them do not. If a process is suspended on processor ¢ and invoked

CHAPTER 3. PROCESS MANAGEMENT 78

on processor j, then the invocation causes a process migration if and only if
¢ # J. Since there is only one ready queue and it is usually on the same
processor as the main scheduler, all the process suspensions and invocations on

other processors are remote operations.

3.2.2 A Multiple Ready Queue Mechanism

The previous scheduling mechanism can be improved by having multiple ready
queues. A main scheduler still has control over the local schedulers in this
mechanism, and the main scheduler still uses a main ready queue. But each
processor now has not only its own local scheduler but also its own ready queue

buffering some processes. Such a mechanism is shown in Figure 3.6.

Although the multiple ready queue mechanism has been theoretically stud-
ied [Corbato 62, Habermann 76] and used in uniprocessor systems and tightly
coupled multiprocessor systems [Ritchie 78, Emrath 85, Tuomenoksa 85], ap-
plying it to shared virtual memory systems requires a somewhat different al-
gorithm to reduce the communication cost. The data structure for processor
information is still maintained by both the main scheduler and local schedulers.
When the current running process on a processor is suspended, its local sched-
uler is invoked to get a ready process from its ready queue. If the local scheduler
has a ready process in its ready queue, then both suspension and invocation
will be local operations. If the local scheduler does not have any ready process
to schedule, it will invoke the main scheduler. The ready queue maintained by
the main scheduler buffers the processes to be moved to individual processors.
The main scheduler may allocate several processes at a time to a processor.

The following is a possible scheduling strategy:

Algorithm 3.2 MultipleQueneSchedule

Local scheduler:
IF LocalReadyQueue is not empty THEN BEGIN
pid := TakeFrom(LocalReadyQueue):
invoke(pid, MyProcessor);

CHAPTER 3. PROCESS MANAGEMENT 79

Preemption
| |
- Completion
||| CPU1L |[—
Ready queue 1
Preemption
—_ Completion
' ||| — cPU2 —n
Ready queue 2
Preemption
_ — Completion
— || —— ||| CPUN ——

Main ready queue Ready queue N

Figure 3.6: Centralized multiple queue scheduling mechanism.

END
ELSE BEGIN
statea[MyProcessor] := free;
invoke Main scheduler;
END;

Main scheduler:
LOOP BEGIN
wait for 2 free processor and a non-empty ReadyQueue;
pid := TakeFrom(ReadyQueue);
i AllocateProcessor(pid);
IF i # NIL THEN
Invoke(pid, i)

ELSE

CHAPTER 3. PROCESS MANAGEMENT 80

put pid back to ReadyQueue;
END;
The maximum length of a local ready queue reflects the locality of processes;
whereas the maximum length of the main ready queue can be considered as a
control parameter of the frequency of load balancing. For example, the following
is a possible strategy:
e the main scheduler only moves processes to a local ready queue whose

length is less than the maximum length;

» the main scheduler is invoked when:

1. a local ready queus is empty, or

2. the main ready queue reaches its maximum length.

Both the maximum length of the main ready queue and the maximum length
of the local ready queue can be set at the initialization stage. Various queuing
policies can also apply to the scheduling mechansim.

An obvious advantage of the multiple ready queue mechanism is that the
degree of centralization has been reduced a great deal if the average length
of a ready queue is not small. Since the responsibility of process suspensions
and invocations has been moved to local schedulers, many operations become
local. Furthermore, local schedulings can be done in parallel. Obviously, the

scheduling mechanism is much better than the one with a single ready queue.

3.3 Distributed Process Scheduling

3.3.1 A Distributed Scheduling Mechanism

A distributed process scheduling mechanism is like the multiple ready queue
centralized scheduling mechanism, but without centralized control. Each pro-
cessor has its own scheduler and a ready queue. There is no centralized sched-

uler or ready queue. The schedulers must negotiate with each other to do

CHAPTER 3. PROCESS MANAGEMENT 81

things such as process migration. A distributed process scheduling mechanism

is shown in Figure 3.7.

Preemption
Migration
T S .
—_— E ' Completion
3 > | 1] : CPUN |——»
Ready queue 1 Preemption
Migration
L] e Rl h g AR f
—_ E Completion
3 - ||| ' CPU2 [—»
Ready queue 2
Preemption
Migration ‘
f— —mmm b e d e mc e C e P
P E Completion
: - ||| ' CPUN |——»

Ready queue N

Figure 3.7: Distributed scheduling mechanism.

When a process negotiate with another, it can get an agreement or a re-
jection. If the schedule given by the distributed process scheduling mechanism
is the same as the one given by the centralized process scheduling mechanism
with multiple ready queues, the only way the distributed mechanism can beat
the centralized one is to let the overhead of the maximal number of rejections
be less than the overhead of the main schedulér in the centralized mechanism.

This means that the goal is to find an algorithm using the distributed scheduling

CHAPTER 3. PROCESS MANAGEMENT 82

mechanism that minimizes the number of rejections on all processors.
The problem is easy if the scheduler has the following information about

other processors:

e the number of processes (ready processes and suspended processes),

the number of ready processes,

e average workload within a specified time quota, and

¢ accessible memory pages.

The number of processes on each processor is the main factor because it repre-
sents the work load of the processor. Usually, processes are suspended by page
faults, process synchronization primitives, and other resource requirements.
The processes waiting for page faults will be awakened in a short time. The
number of ready processes indicates whether there are processes available on
the processor that can be migrated to gain parallelism. The accessible memory
pages on each processor can be used to optimize decisions on load balancing,
since a process migration may induce a great deal of page migration, which is
more expensive than no page movement at all.

The information about the number of ready processes is important for min-
imizing the number of rejections. When two processors negotiate with each
other about process migration, one processor must have at least one ready pro-
cess that can be migrated. Therefore, when a scheduler with no ready process
is asking for work, it needs to talk to the processor that has at least one ready
process on it. Similarly, when a scheduler with ready processes is looking for
help, it needs to find the processor without any ready processes.

With almost no extra effort, the processors can keep each other up to date on
their current work loads by adding a few extra bits to the messages transmitted
for the other shared virtual memory system operations [Ellis 85). Usually, a half
byte or a byte will be enough to transfer the information. The extra four bits
or eight bits can be packed into every message at almost no extra cost.

With such a distributed process scheduling mechanism, it is possible to
apply many kinds of scheduling strategies.

CHAPTER 3. PROCESS MANAGEMENT 83

3.3.2 Active Load Balancing Strategy

Active load balancing is analogous to “data-driven” evaluation in programming
languages [Baker 78, Hudak 85]. The main idea is that when a processor has
many processes in its ready queue, its scheduler tries to ask another processor
for help. If that processor agrees, it accepts the migrated process; otherwise,
it sends a rejection message. When the scheduler gets a rejection, it has to try
another processor. The schedulers actively try to do less work to balance the
work load in the shared virtual memory.

The algorithms for the scheduler and its server are:

Algorithm 3.3 ActiveLoadBalance

Scheduler:
WHILE NeedHelp() DO BEGIN
pid := TakeFrom(ReadyQueue);
i := NextProcessor(pid);
ask processor i to accept process pid;
END;
run a process;

Server:
IF AcceptProcess() THEN
put the process into ready queue
ELSE
send a reject reply:
In these algorithms each scheduler controls when to ask for help and the server
of the scheduler on each processor controls when to accept processes from other
processors. - ‘

An cbvious algorithm for NecedHelp is to put an upper bound on the number
of processes on the local processor. When the number of processes exceeds the
upper bound, the function returns true. The function AcceptProcess can also
be simple. It puts a lower bound on the number of processes on its processor;
if the number is less than the lower bound, it returns true. This gives good
performance when the processes in the application program are well balanced

such that each process has similar execution time. However, if processes are

CHAPTER 3. PROCESS MANAGEMENT 84

not well balanced or the processor speeds are different, such a straightforward
approach does not give good performance.

More complicated algorithms can be developed in favor of different kinds
of applications. Instead of putting thresholds on the number of processes, the
scheduler and server can put thresholds on the number of ready processes, or
on the number of processes and the number of ready processes at the same
time. In addition, the memory requirement can be considered. For example,
the “ask for help” request includes the information about which memory pages
are needed by the migrated process. The function AcceptProcess can then
determine how many memory pages are needed when the process is accepted.
Since the balancing strategies are application dependent, it is hard to find a
simple method giving optimal performance for all the applications.

There are many ways to find a processor when a scheduler asks for help.
Such a processor must be able to get a true return when executing Accept Process.
This means that the processor that may accept a process has no ready process
at the requesting time and has less processes than other processors. The sched-
uler can find a possible processor by looking in the information table. In order
to avoid concurrent requests, the search algorithm can be a2 function of the
local processor number such that when a processor is the possible processor for
more than one processor, the schedulers will not choose it at the same time.
A round-robin jump search is one straightforward example of how this can be

done.

3.3.3 Passive Load Balancing Strategy

Passive load balancing is analogous to “demand-driven” evaluation [Friedman 76,
Henderson 76). The idea is to migrate processes passively in the sense that when
a scheduler does not have any ready process to run, it sends out a request to
another scheduler to migrate a process. If the requested scheduler agrees, it

migrates a process to the requesting scheduler; otherwise, it sends a rejection.

CHAPTER 3. PROCESS MANAGEMENT 85

When a rejection arrives, the requesting scheduler needs to try another sched-
uler. The schedulers in the shared virtual memory system are so lazy that they
do not want any processes unless they do not have anything to run.

The following is the algorithm for the scheduler and its server:
Algorithm 3.4 PassiveLoadBalanice

Scheduler:
LOOP BEGIN
IF ReadyQueue is not empty THEN
run a process from ready queue;

WHILE NeedMoreProcess() DO BEGIN
i := NextProcessor();
send a passive request to i;
END;

END;

Server:
proc := FindProcess();
IF proc # nil THEN
migrate proc
ELSE
send a reject reply;
When NeedMoreProcess returns true, the scheduler will ask a processor for
a process to migrate over to run. The server decides if its local processor will
give up a process.

Like the active load balancing algorithm, there are many algorithms for
NeedMoreProcess and FindProcess. The function NeedMoreProcess can
simply put a lower bound on the number of processes on the local processor.
If the number is less than the lower bound, the function returns true. The
function FindProcess can put upper bounds on the number of processes and
the number of ready processes. If both of them are less than their bounds, a

process will be returned.

CHAPTER 3. PROCESS MANAGEMENT 86

3.3.4 Page-Demand Load Balancing Strategy

The page-demand load balancing strategy tries to reduce page thrashing in the
shared virtual memory system. When two or more processors try to write to
the same page at the same time, the page moves from one processor to another
in order to complete the writes. Page thrashing occurs if the write operations
to the same page are performed many times and the page has to move back
and forth from one processor to another. For general purposes, page thrashing
can be defined as a page moving to and from a processor & times within a
time period ¢. The values & and ¢t depend on the performance of the target
multiprocessor architecture.

Page thrashing can be discovered by using a fixed length list L. Each
element of L consists of the following fields:

e page number

e counter

¢ time stamp
The counter can be as small as [log k] bits and the time stamp needs precision
fine enough to distinguish ¢. At the initialization stage, L is empty. The
following procedure will return true when page p is thrashing. The procedure
is called when a page fault occurs.
Algorithm 3.5 Detecter(p)

search L for the element e with e.PageNumber = p;
IF e = nil THEN BEGIN
IF length(L) = M THEN
delete an element from tail of L;
get a new element e;

e.PageNumber := p;
e.counter := 1;
e.TimeStamp := CurrentTime();
END

ELSE IF e.counter = k THEN BEGIN
e.counter := 1;

move e to the head of L; :
IF CurrentTime() - e.TimeStamp < t THEN

CHAPTER 3. PROCESS MANAGEMENT 87

RETURN true
ELSE BEGIN
e.TimeStamp := CurrentTime();
RETURN false;
END;
END
ELSE BEGIN
e.counter := e.counter + 1;
move e to the head of L;
RETURN false;
END;

The list L in the algorithm is like a working set of the local processor. The
length of the list, M, is then the size of the working set. The algorithm replaces
the elements in the list based on a least-recently-used philosophy. M should be
small enough so that finding an element in the list is efficient.

When page thrashing is discovered during a page fault, it is possible to
migrate the faulting process tec the processor that owns the page. This method
reduces the page thrashing if the faulting process and the processor owning the
page use the page in the future. Such a balancing strategy can be viewed as
data driven.

Although this method reduces the page thrashing, it may introduce new
page thrashing when the migrated process needs to write to some pages being
used by other processes on its original processor. In order to make an optimal
decision of whether a process migration should be performed, the processor
has to use the information about the future memory page references of all the
processes on the faulting processor. Such information is difficult to obtain with-
out a smart compiler. The suitable approaches for the shared virtual memory
system are those that do not need the information.

The following are a number of rules based on the number of total processes
and the number of ready processes on each processor:

o If the number of the processes on the processor owning the page is less

than the one on the faulting processor, then the process should be mi-

CHAPTER 3. PROCESS MANAGEMENT 88

grated.

o If the number of the ready processes on the processor owning the page is
less than the number of ready processes on the faulting processor, then
the process should be migrated.

e If the faulting processor does not have any more ready processes, the
faulting process should not be migrated.

The rules above try to consider both maximizing parallelism and avoiding page
thrashing without knowing anything about applications. It is possible to de-
velop many other rules by combining the above rules with different weights.

The load balancing strategy can be combined with the active and passive

load balancing strategies in favor of different aspects of the shared virtual mem-
ory system. The choices of how to combine them can be decided at the system

initialization stage.

3.4 Conclusions

This chapter has studied the issues in process management for the shared vir-
tual memory system on loosely coupled multiprocessors. Two kinds of process
scheduling mechanisms have been studied—centralized and distributed. Both
scheduling mechanisms support traditional process control primitives, synchro-
nization primitives, and process migration capability.

The centralized process scheduling mechanism is simple but it has more
overhead on loosely coupled multiprocessors. The centralized process schedul-
ing mechanism with multiple ready queues can significantly reduce the commu-
nication overhead introduced by loosely coupled multiprocessors.

The distributed process scheduling mechanism studied in this chapter is
attractive because it supports distributed scheduling strategies. With approx-
imate information about the processes on each processor, many simple load

balancing strategies can be applied to the process scheduling mechanism.

Chapter 4
Implementation

The available iraplementation environments all have limitations. In order to
bring a shared virtual memory system into reality, implementors have to over-
come these limitations. This chapter focuses on the engineering issues of such

an implementation.

+.1 Implementation Environment

4.1.1 Basic Requirements

There are three basic things that the shared virtual memory system requires of

a loosely coupled multiprocessor system:
1. A reasonably fast communication link.

Many commercially available systems meet this requirement. In partic-
ular, popular local computer networks such as Ethernet [Metcalfc 76] or
token-ring networks [Wilkes 79, Leach 83] satisfy the requirement. Al-
though most commercial local network links support transmission at about
10M bit/second, the real transmission speed between two processors is
only about 1M or 2M bit/second in most, of the local computer networks

using MC68000 based machines because processor speed dominates. For

89

CHAPTER 4. IMPLEMENTATION 90

implementing a shared virtual memory system, the most important as-
pect of the communication link is the ratio of machine speed to its real
communication speed. My implementation experiments show that a pro-
cessor speed of 1 MIPS with a real communication speed of 1M bit/second
is sufficient for many parallel programs.

2. Homogenesty of processors.

While the processors of the system do not need to run at the same speed,
they should have the same data format and the same instruction set
because processors share both data and instruction code. Whether it
is possible to build a shared virtual memory system on a heterogeneous
multiprocessor system is an open question.

3. A memory management unit (MMU) wiith a page-level access protection

mechanism.

The page-level protection mechanism allows programs to set the access
mode (nil, read-only, or writable) for each page. An illegal memory ref-
erence will cause a page fault.

In addition to the above basic requirements, if one plans to implement a
shared virtual memory on top of an existing operating system, the operating
system should allow:

¢ sending a packet from one processor to another,

e setting the page-access protection of individual pages, and

o page-fault handlers provided by the prograﬁ:mers to implement a shared

virtual memory mapping manager.

Many existing loosely coupled multiprocessors meet these basic requirements.

4.1.2 Ideal Environment

Although a shared virtual memory. could be implemented on a multiprocessor
system meeting the above requirements, several additional capabilities would

provide an ideal environment.

CHAPTER 4. IMPLEMENTATION 91

In addition to the basic hardware requirements, an ideal system would have
a large address space, say 32 to 40 bit wide, on each processor. This is a
necessary condition for building a large shared virtual memory. An application
program with many processes will use a large address space if each process has
a relatively large stack.

The ideal system would also be able to distinguish read page faults from
write page faults in hardware because the shared virtual memory mapping deal
with them differently (see Chapter 2). The cost of distinguishing page faults
in software cannot be ignored because it is paid on each page fault. Also,
an instruction may require two memory references on the same page. If one of
them is a write reference, then the processor should get write access to the page
to avoid a read page fault. If the hardware can detect this, many unnecessary
read page faults can be eliminated. Most existing hardware does not distinguish
between read and write page faults because traditional operating systems do
not need to do so.

A large, existing uniprocessor virtual memory system would ease the im-
plementation of 2 shared virtual memory. If each processor has a large virtual
merhory, the shared virtual memory implementation might not need a special
page replacement algorithm. Implementing a page replacement algorithm is
almost as difficult as implementing a traditional virtual memory system.

Ideally, the multiprocessor will have a small page size, as small as 256 bytes.
One reason is that memory contention is very closely related to page size; the
smaller the page size, the less memory contention. Another reason is that a
small page can be moved efficiently from one processor to another. If the page
size is smaller than the network packet size, the memory mapping managers
can move a page by placing it in one packet together with the information for a
request or reply. It has been shown that the moderate page sizes (8—16K bytes)
are better than small ones for diskless workstations [Lazoweska 84]. This does
not match the small page size requirement for implementing a shared virtual

memory system. In order to optimize both, aichitecture designers may need

CHAPTER 4. IMPLEMENTATION 92

to consider using different page sizes for disk paging and for shared virtual
memory.

The ideal operating system would have an integrated heavyweight and
lightweight process scheduler; then all the processes are scheduled by the same
scheduler and they all use the same process synchronization mechanism. With-
out such a scheduler, an obvious alternative is a two-level process scheduler
in which the operating system scheduler schedules all the heavyweight pro-
cesses and a lightweight scheduler runs within a heavyweight process. The
disadvantage of the two-level process scheduler is that it is difficult to overlap
synchronous I/O among lightweight processes. When an I/O operation occurs
in a lightweight process, the heavyweight process scheduler would suspend the
heavyweight proéess where the lightweight process resides, and start another
heavyweight process. The suspended heavyweight process could be invoked
only when the I/O operation is complete,

Finally, since the low level implementation of a shared virtual memory map-
ping manager depends on the communication between processors, the ideal en-
vironment would have an efficient transmission protocol modeled on a remote
procedure call (RPC) mechanism [Nelson 81, Birrell 83]. The protocol does
not need to be as complicated as full RPC but it should be reliable. If the
communication suﬁports broadcast or multicast transmission, it would be con-
venient to have broadcast and multicast in the protocol. The shared virtual
memory mapping managers relies on page moving, sc an efficient page mov-
ing utility would significantly enhance the performance of the shared virtual
memory implementation.

Although some of the above capabilities exist in some systems, no existing

system contains all of them.

CHAPTER 4. IMPLEMENTATION 93

4.1.3 Loosely coupled Multiprocessors

This section describes the available types of loosely coupled multiprocessors
that are suitable for implementing the shared virtual memory system. In the
rest of the chapter, I will discuss in general the algorithms for implementing
the system. When the algorithms are architecture-dependent, I will provide
specific discussions of them.

The interconnection topology of available loosely coupled multiprocessors
falls into two categories: complete connection and point-to-point connection.

The two popular complete connection architectures are bus and ring. A bus
connection architecture has a common communication link connecting all the
processors together; only one packet is transfered at a time on the bus. Hard-
ware supports three kinds of communication services: point-to-point, broad-
cast, and multicast. A typical example of a bus connection multiprocessor is a
number of processors connected by an Ethernet [Meatcalfc 76).

A ring connection architecture usually uses a ring communication link on
which processors pass tokens to each other. Most ring connection architectures
only allow a single token to be passed around in a ring; well-known examples
are the Cambridge ring [Wilkes 79] and the Apollo Domain [Leach 83]. Some
ring connection architectures allow multiple tokens in a ring. Ring connection
architectures can provide the same communication services that bus connection
architectures do: point-to-point, broadcast, and multicast.

A point-to-point connection architecture has multiple links connecting pro-
cessors; usually these architectures have a large number of processors. A pro-
cessor can communicate directly only with its neighbors. If a processor sends
a packet to a non-neighbor processor, the packet is stored and forwarded by
the processors along the path from the source processor to the destination pro-
cessor. The communications on different links can be done in parallel, but
broadcast and multicast are usually not suppqrted by hardware. Examples of

point-to-point connection architectures are Cosmic Cube [Seitz 85] and CHiP

CHAPTER 4. IMPLEMENTATION 94

[Snyder 82].

Multiprocessor architectures of different scales are quite different in many
aspects. A small-scaled loosely coupled multiprocessor system is usually a num-
ber of processors connected by a complete connection communication link. Each
processor in the system has a relatively large physical memory and usually has
its own secondary storage on which a virtual memory system is implemented.

A large-scaled multiprocessor system is usually designed only for parallel
computation. Each processor in the system has a relatively small physical
memory and has no direct data path to a secondary storage. Therefore, there

is no virtual memory system implementation on the processors.

4.1.4 Communication Protocol

The implementation of a shared virtual memory system requires a reliable com-
munication protocol for remote operations. This section discusses the require-
ments of the remote operations in a shared virtual memory system and in-
formally describes a protocol to handle the remote operations for the system
implementation.

There are three kinds of remote operations in a shared virtual memory
system:

¢ implementing the memory mapping managers,

e process control and synchronization, and

e dynamic memory allocation.

A remote operation has the following general form:
Request(processor, request_id, request_type, args)

where args is a record that contains input and output arguments. I call the
remote operation mechanism a simple RPC because it is a simplified version of
the traditional RPC [Nelson 81, Birrell 83]. Syntactically, an RPC and simple
RPC are similar. The simple RPC is different from the RPC in two ways. The

CHAPTER 4. IMPLEMENTATION 95

first is that the total number of remote procedures is fixed, eliminating the stub
compiler and RPC id generator for dynamic RPC server binding. The second
is that there is an upper bound on the execution time of a simple RPC; the
upper bound is small, usually milliseconds. The simple RPC can simply wait
for a reply (the RPC return) and retry the request if it does not get one within
the bounded amount of time, so the acknowledgement packets for requests are
not necessary.

The simple RPC in a shared virtual memory system has some new require-
ments. One is to have broadcast or multicast calls if a multiprocessor supports
broadcast or multicast in hardware. A broadcast or a multicast request needs
several reply schemes:

1. areply from any receiving processc;r,

2. replies from all receiving processors, and

3. no reply at all.

The first option is useful for broadcasting page fault requests to locate page
owners (see Chapter 2). The second option can be used for implementing
invalidation operations. The third option is for broadcasting approximate in-
formation.

Another requirement of simple RPCs is a forwarding mechanism that allows
a processor to send a request to another processor and get a reply from else-
where. For example, processor 1 can send a request to processor 2, processor
2 forwards the request to processor 3, and so on until processor m performs
the operation and sends a reply back to processor 1. There are no intermedi-
ate replies involved in the operation. This mechanism is particularly useful for
implementing the dynamic distributed manager algorithm (Chapter 2).

For further optimization, the system needs asynchronous simple RPC re-
quests. A process that sends out an asynchronous request can proceed without
waiting for a reply unless the number of outstanding asynchronous requests ex-
ceeds an upper bound, k. Once a reply to an outstanding asynchronous request

is received, the calling process will be able to continue. This mechanism can

CHAPTER 4. IMPLEMENTATION 96

usually reduce the response time of a request by a factor of two which is useful
for many modules in the system.

The simple RPC protocol should be able to deal with lost packets. Losing
packets by hardware is a well-understood problem. Losing packets by software
is also possible. A typical case is when a process runs out of physical memory
buffers and the incoming packets are thrown away. Such a loss of a request or
reply can create deadlocks or other serious errors in a shared virtuai memory
system, so the simple RPC protocol must have a retransmission mechanism.
This simple RPC protocol consists of three parts:

¢ sending a request,

e receiving a request,

o and receiving a reply.

The following are the algorithms for these three parts:
Algorithm 4.1 SendRequest

1. Send out the request according to the request_type, which can be either

broadcast, multicast, one-to-one, or forwarding.

1 -

If the request_type indicates that the request is synchronous, suspend
the process.

3. If the request_type indicates that the request is asynchronous and there
are k outstanding asynchronous requests, then suspend the process.

4. Resend an outstanding request if its reply has not arrived within time
quota t (where ¢ is greater than the maximum processing time of a re-
quest).

In order to resend outstanding requests eticiently, a timeout mechanism may
be needed.

All the requests are received by a request dispatcher. The dispatcher dis-

patches an incoming request to a server process according to its request_id.
The dispatcher protocol also needs to take care of the retransmission of requests

and replies. It is possible that a resent request becomes a duplicate because

CHAPTER 4. IMPLEMENTATION 97

the original request may arrive at the same time as the retransmission decision
is made. In order to distinguish duplicates from originals, each request needs

a unique identifier.

Algorithm 4.2 RecesveRequest

1. If the request is a duplicated one, then drop the request.
2. If the reply for this request had been sent already, then resend the reply.

3. If the request is not a duplicated one, then dispatch the request to a server

according to its request_id.

Resending a reply is necessary because the previous reply may have been lost.
All the replies are received by a reply receiver. The reply receiver completes
a request and takes care of duplicated replies.

Algorithm 4.3 RecesveReply

1. If the reply is a duplicate, throw the reply away.

2. If the reply is for an asynchronous request, decrement the outstanding
count and wake up the calling process if it was waiting for outstanding
asynchronous requests.

3. If the reply is for a synchronous request, pack the returned arguments

into the output arguments and wake up the calling process.

In practice, the reply receiver can be combined with the dispatcher into one
program.

The retransmission protocol is based on the philosophy of resending replies
only when necessary. Such a design is based on the following assumptions:

1. local computation is always correct, and

2. communication may be unreliable, but once a packet is received, its con-

tent is always correct.

The protocol is reliable only when these assumptions hold. In practice, the

assumptions are reasonable.

CHAPTER 4. IMPLEMENTATION 08
4.2 Shared Virtual Memory Mapping

4.2.1 Implementation Modes

A popular way to protect system kernels is to use different “modes” for different
programs. Most available architectures provide at least two modes: system and
user. Programs in system mode can use any privileged instructions such as
changing mode and prohibiting interrupts; programs in user mode cannot.

In an architecture with the two modes, control passes back and forth be-
tween them. Programs in different modes usually have different memories and
stacks so that a program in user mode cannot destroy useful data in the system
memory space, or adversely affect other user programs. For example, system
programs such as interrupt handlers and virtual memory page fault handlers
would be in system mode. When an interrupt occurs while the machine is exe-
cuting a I;rogram in user mode, the mode is switched to system mode and the
control is switched to its interrupt handler. When the processing is done, the
control is returned to user mode.

A shared virtual memory can be implemented in either user mode or system
mode. The advantages and disadvantages of either type of implementation are
mainly reflected in system performance and implementation effort.

The system performance normally depends on the overhead of processing a
page fault and the speed of sending and receiving a packet over the communi-
cation link. A user-mode implementation usually has more overhead in both
instances than a system-mode implementation. Since programs in user mode
cannot access any system memory location, the faulting mechanism requires
many context switches. For example, when a fault occurs, the context is usu-
ally saved by hardware or software onto the system stack and copied onto the
user stack in order to pass the control to a fault handler in user mode. When
the control returns from the fault handler, the context on the user stack will be
copied back onto the system stack and then restored into hardware. Therefore,

a user-mode page fault requires at least four context switches; a system-mode

CHAPTER 4. IMPLEMENTATION 99

implementation requires only two.

The low-level operations for sendixg and receiving a packet are usually in
system mode. If this is the case, the operation of transfering a packet from
user memory space on one processor to another may require copying the packet
back and forth between user memory space and system memory space in order
to prevent system calls from getting page faults. In many existing systems, in
addition to the cost of switching modes, a program in user mode may need to
pay the cost of an extra copy for each send or receive.

While a system-mode implementation may be more efficient, it is usually
more difficult to implement than a user-mode implementation. First of all, a
system-mode implementation of the memory mapping managers may not allow
further page faults once the control is in a page fault handler. So, the system
data structures, such as page table entries and buffers for the simple RPC
protocol, must be resident before using them. A user-mode implementation
usually does not need to worry about the data structures because they can be
simply stored in its user-mode virtual memory address space.

Program debugging is another important consideration. Debugging a par-
allel system is much harder than debugging a sequential system because of the
difficuity of developing parallel program debugging tools. Debugging a system-
mode implementation may require rebooting systems over and over again, which
is particularly annoying when processors are geographically far away from each
other. In debugging a user-mode implementation, one does not usually need to
reboot the systems. Also, one can easily separate implementation bugs from
operating system bugs because the system memory space is protected.

This is not to imply that a user-mode implementation is always easy. If the
shared virtual memory system is implemented on top of an existing system,
the implementation environment may be so poor that one has to modify some
kernel code, in which case the implementer has to understand completely the
operating system. A system-mode implementation integrated with an exist-

ing system, of course, requires understanding the operating system, but such

CHAPTER 4. IMPLEMENTATION 100

an impiementation is probably not as chaotic as a user-mode implementation
because usually the implementer will not need to modify someone else’s code.

In general, it is probably a good idea to start with a user-mode implementa-
tion for experimental purposes and then build a system-mode implementation

for efficiency.

4.2.2 Multiple Address Spaces

There are two basic ways to implement multiple address spaces in a shared vir-
tual memory system: single heavyweight process implementation and multiple
heavyweight process implementations.

In a single heavyweight process implementation, there is only one “big”
shared virtual memory address space. When multiple applications request their
address spaces, the big address space is partitioned into small pieces, one per
application. A piece of address space allocated to an application is shared by a
number of processors specified by the application. An address space in this case
does not always have a starting address 0. Program relocation, however, can
provide clients with a transparent interface. One advantage of this approach
is its simple implementation. The disadvantage is that the number of shared
virtual memory address spaces is limited by the size of the big address space.

In a multiple heavyweight process implementation, each processor has sev-
eral heavyweight processes, one for implementing each shared virtual memory
address space. When initializing a shared virtual memory space among a group
of processors, one creates a heavyweight process on each processor in the group.
These heavyweight processes implement the same shared virtual memory space
and they do not communicate with the heavyweight processes for other shared
virtual memory spaces.

If page fault handlers are implemented in user mode, each heavyweight pro-
cess on each processor has a page table for the corresponding shared virtual

memory space. The technique of implementing a single address space can di-

CHAPTER 4. IMPLEMENTATION 101

rectly apply to the created heavyweight processes. If page fault handlers are
implemented in system mode, each processor only has one page table built at
initialization stage. A processor tells which page fault belongs to which shared
virtual memory space by looking up the page table. The advantage of this
approach is that each address space can be rather large, starting from address
0. The disadvantage is that its implementation is more difficult.

The implementations of both multiple and single heavyweight process can
present clients with the same interface, so choosing one over another depends
on the individual system on which the shared virtual memory is being imple-
mented. For example, one may choose single heavyweight process implementa-

tion on an architecture with a large address space for simplicity.

4.2.3 Page Table Compaction

Recall that the data structure used by both page fault handlers and their servers
is a page table. The size of a page table is proportional to the size of its shared
virtual memory. A page table needs to have m/s entries, where m is the size
of a shared virtual memory space in bytes and s is the page size in bytes. For
example, if the size of a shared virtual memory space is as large as 232 bytes,
and s is 2'° bytes, the page table will have 2?2 (or more than 4 million) entries.
This is too large for any implementation since the memory coherence algorithms
described in Chapter 2 require each processor to have its own page table.

A page table can be compacted by reducing the number of entries and
compressing the size of each entry. The following presents a straightforward
way to reduce the number of page table entries and three basic methods to

compact a page table entry.

Hash Page Table

There is no way to reduce the number of page table entries if every processor

uses the whole shared virtual memory address space. Fortunately, this is not

CHAPTER 4. IMPLEMENTATION 102

the normal case. A parallel program based on a global memory model normally
has a number of processes, at least one on each processor. Each process usually
accesses a portion of the shared data structures. This means that when a
shared virtual memory system has a number of processors, each processor only
accesses part of the address space. If this is true, the hash table technique can
be used to compact a page table [Knuth 73].

The basic hash table size can be adjusted according to the configuration of

the system. For example, it can be the smallest prime number ¢ such that

>m
7 csN

where ¢ is a parameter to be adjusted and N is ihe number of processors in the
system. Each entry in the hash table is a linked page table entry list.

In order to keep the size of the hash page table small, one can delete a page
table entry when the access to the page becomes nil and no process is accessing
it. This can be done either when the memory coherence algorithm invalida*es

a page or when the total size of the page table exceeds some upper beund.

Page Table Entry

The size of a page table also depends on the size of each entry. In the dynamic
distributed manager algorithm, each entry in the page table conmsists of five
fields: probOwner, access, lock, queue, and copy set (see Chapter 2). If the
shared virtual memory has a 32 bit address space and there are N processors
in the system, then:

e the probOwner field needs [log V] bits,

o the access field needs two bits because it has three states: write, read,

and nil,
o the lock field needs one bit if there is a test-and-set instruction available,

o the queue field needs 32 bits, and

the copy set field needs N bits if bit vector is used to represent a set
[Aho 74].

CHAPTER 4. IMPLEMENTATION 103

Therefore, the size of ar. entry (in bits) is
se =N + [log N] + 35.

If N is small (e.g. less than 32), the page table entry size is not bad. When
the shared virtual memory system is on a large-scaled multiprocessor, this is
a serious problem because the size of an entry is linearly proportional to the
number of processors in the system.

The probOwner field does not need any compaction because [log N] bits is
small enough. The access field and the lock field do not need any compaction
either because they only need three bits together.

The queue field can be compacted by using indices of queue nodes instead
of using real pointers. Queue nodes in this case are allocated from a node
pool area which is represented as a vector. When a queue is dismissed, the
queue nodes will be deallocated. An index of the vector only requires [log s,
bits where s, is the length of the vector. Since each processor has its own
node pool, s, is the maximum number of processes allowed to be waiting for
page faults on each processor at any given time. Thus, s, is bounded by the
maximum number of processes on each processor, which is usually small. For
example, when 8, = 1024, the queue field needs only 10 bits.

The copy set field is a set of processor numbers S = {1,...,N}. It is used
solely by the memory coherence algorithm with the following three operations:

o Insert(e,S) — inserts an element e into a set S.

o Nezt(e, S) — returns nil if all the elements in S are less than e; otherwise

returns the smallest element ¢' in S such that ¢’ > e.

o Size(S) — returns the number of elements in set S.

The speed of these operations is not very important, so the algorithm only
concentrates on saving space. Three ways to compact a copy set are: linked

bit-vector, neighbor bit-vector, and vaguely-defined set.

CHAPTER 4. IMPLEMENTATION 104

Linked Bit-vector

The linked bit-vector approach represents a copy set as a linked list. The main
ide= of this approach is to link the meaningful bit-vectors together to save space.
Each element in the list has three fields: link, indez and bit-vector. The link
field points to the next element in the list. The bit-vector field is a zero-based
bit vector of / bits. On each processor, there is a zero-based vector called base
defined as:

baselt] =i for z’=0,...,£lv——1.

The index field is used to index the base to tell the starting point of its bit-
vector. The definition of the bits in a bit-vector is that base[index] + ¢ is in
the copy set if and only if the ¢-th bit of a bit-vector is 1. Figure 4.1 shows a
compacted copy set S = {3,995} when N = 1024 and ! = 32.

S = {3,995} base
1 o [0
0} 0-.-00100 1 32
31| 0---01000 | nil 32| 992

Figure 4.1: An example of linked bit-vector compaction.

Since Next and Size are trivial, I present only the algorithm for Insert:

Algorithm 4.4 Insert(e,S)

L. Traverse down to the 4-th element in the list such that e > base[indezy|
and e < base[indez;| + 1.1

!For simplicity, index; means the indez field of the i:th element in the list.

CHAPTER 4. IMPLEMENTATION 105

2. If such an element does not exist or ¢ > ! (which means that ¢ is out of
the range of the bit-vector), then make a new element and insert it as
the new k+1-th element in the list. Set indexs,; to an appropriate value

such that e > base[indexi,,] and e < base[indexiy, | + L.

3. Set the i-th bit of the bit-vector to 1 such that e = base[index;] + .

The indez field requires [log N/I] bits. The bit-vector size | can be adjusted
according to need. The link field in each element can usually be compacted
with the compaction methed proposed in [Li 86).

The linked bit-vector compaction method works well when the copy set is

very sparse, but it does not work well otherwise.

Neighbor Bit-vector

In many large-scaled multiprocessors, a processor only has a direct connection
to a small number of processors, which are usually called neighbors. For ex-
ample, in a Hypercube of IV processors, each processor is directly connected to
log N processors. When a processor sends a packet to a non-neighbor processor,
the packet is stored and forwarded by the processors along the path. For mul-
tiprocessors of this kind, each processor can only store its neighbor processor’s
numbers into its copy set. Such a copy set is called neighbor copy set.

The neighbor bit-vector approach uses a neighbor copy set S’ to compact
the information of a copy set S on processor 7. The neighbor copy set is the
set of all neighbors of processor 7 that are on the shortest paths from 7 to the
elements of the copy set. A more formal definition is that a neighbor e € S
if and only if there exists k € S such that e € Pp; where P, is the set of
the processors (including k) that are on the shortest path from processor k to
processor z.

The following is always true:

s'csc{y,...,N}

CHAPTER 4. IMPLEMENTATION 106

because e € S represents all the processors for which processor 7 asks processor
e to forward packets. The three operations are not listed because they are
straightforward.

S’ is represented by a bit-vector of ! bits where
N -
l= max AR

The meaning of the bits in the bit-vector on a processor is defined by an internal
table Ty such that Tj[k] € S’ if and only if the &-th bit in the bit-vector is 1.
There is another internal table called 7, that maps processor numbers to bit
numbers in the bit-vector. Table T} is initialized on each processor according

to the neighbor processor numbers. Table T} is initialized such that

T[T2[p)) = p.

For example, suppose a shared virtual memory is implemented on an 128-
node hypercube muitiprocessor. Each processor has seven neighbors which
are labelled 0,...,7; so each copy set needs seven bits. The hardware routing
guarantees that any packet in the multiprocessor traverses at most 7 Pprocessors
because 7 = log128. Table T} on each processor implements the mapping
between processor numbers and its neighbor labels. Table T; implements a
inverse mapping.

The neighbor copy set definition requires modifications to the memory co-
herence algorithm such that an invalidation operation always sends a broadcast-
like message to a neighbor if it is in the neighbor copy set. When an invalidation
is sent to a processor e € ', it needs to send to all the processors on the shortest
path starting from e even if only e has a copy. A partial solution to this problem
is to use a status bit-vector V of { bits for each neighbor copy set. The &-th bit
of V is 1 if and only if T\[k] represents other processors. If distributing copy
sets (described in Chapter 2) is used in the memory coherence algorithm, the
probability of setting the bits in V' to 1's will be smaller. This claim, however,

needs empirical data to justify.

CHAPTER 4. IMPLEMENTATION 107

The positive side of this approach is that it only uses [bits for each copy

set. In a hypercube multiprocessor, { = log V.

Vaguely-defined Set

A vaguely-defined set is, as the name indicates, a set without precise definition.
The idea of a vaguely-defined set was developed because the copy set field is
only used by the invalidation operations in the memory coherence program. It
is harmless to send a page invalidation request to a processor that does not
have the page. This is why the memory coherence algorithms allow a processor
to broadcast an invalidation request when the number of elements in a copy set
exceeds an upper bound.

The vaguely-defined set approach uses a one-bit tag together with any list
representation of a copy set. If the tag bit is 0, the list is valid. If the tag
bit is 1, the list is invalid and the copy set contains all the processor numbers.

Figure 4.2 shows an example of a vaguely-defined set.

tag

copy set

Figure 4.2: An example of vaguely-defined set compaction.

The three operations on the copy set are simple:
Algorithm 4.5 Insert(e,S)
L. If the tag bit is 0, and the length of the list of S is less than [, put e into
the list.
2. If the tag bit is 0, and the length of the list of S is equal to I, set the tag
bit to 1.

CHAPTER 4. IMPLEMENTATION 108

Algorithm 4.8 Nezxt(e, S)

1. If the tag bit is 0, then traverse down the list and return the smallest

element ¢’ € $ such that ¢’ > e.
2. If the tag bit is 1, then return e+ 1 if e < N.
Algorithm 4.7 Size(S)

1. If the tag bit is 0, then return the length of the list.
2. If the tag bit is 1, then return V.

This approach does not restrict the data structure of the list. The simplest
data structure might be a list of processor numbers. The processor number field
in this case needs [log N] bits and the list can be compacted by the method
proposed in [Li 86] so that normally only two bits are needed for each pointer
field. The ideas of the linked bit-vector can be also applied to the vaguely-
defined set approach.

All three approaches have advantages and disadvantages. The linked bit-
vector approach is suitable for the shared virtual memory system in which copy
sets are sparse, but it is worse than using bit-vector when they are not sparse.
The neighbor bit-vector approach works well for the multiprocessor system in
which each processor has a small number of neighbors; it does not do much
good when the number is large. The vaguely-defined set approach is simple
and should be good for the case in which memory pages are either shared by
all the processors, or very few processors. It can also be combined with other
compaction approaches.

By using the hashing technique and compacting page entries, one can have
a rather practical page table representation for a large shared virtual memory
address space. But the total storage needed for a page table may still be too
large to fit into physical memory all the time. In this case, one needs to get

help from secondary storage or other processors.

CHAPTER 4. IMPLEMENTATION 109

4.2.4 Page Replacement

Since the size of a physical memory on a processor is usually much less than
the size of a shared virtual memory address space, the implementation of a
shared virtual memory system must have page replacements between a physical
memory and other storage devices.

It is well understood that there is no ideal solution for page replacement
because an ideal algorithm requires data about future memory references which
are impossible to predict. Therefore, this section investigates what should be
done to make a better page replacement algorithm. The section studies how to
find a page for replacement and investigates how to replace it. Three cases are
considered: page replacement for a multiprocessor in which each processor has
a private or shared disk, integration of shared virtual memory page replacement
with an existing virtual memory system, and page replacement among physical

memories.

Page Replacement Priority

When a page fault occurs and there is no unused physical memory page avail-
able, the shared virtual memory system invokes the page replacement algorithm
to fin? a memory page and save it elsewhere to make a space for the new page
to put in. The question is which page should be chosen for replacement. Obvi-
ously, the page replacement algorithm of a traditional virtual memory system
cannot be applied here because a shared virtual memory system has more kinds
of memory pages than a traditional one. Different pages have different replace-
ment priorities even if they have the same last reference time.

The replacement priority of a page can be computed by its page-type priority
and its last reference time. The relationship between the two factors can be
adjusted by the system designers. A possible way is to weight last reference
time by:

Pri0cepiace = PriOgypcW + (t — tigat) (4.1)

CHAPTER 4. IMPLEMENTATION 110

where priorepiace is the replacement priority of a page, prioy,. is the page-
type priority assigned by the system designers, w is a weight which is usually
the same for all page types but can be different for different page types, ¢ is
the current time, and {4, is the last reference time of the page. The Least-
Recently-Used (LRU) page replacement policy can be viewed as a special case
of the page replacement priority, one which does not have the term of prioy,.w.
Page replacement priority ensures that LRU is used for each page type while the
priorities are preserved among different page types for a range of last reference
time. Adjusting the value of w for each page type can control such a range.
There are five kinds of memory pages in a shared virtual memory address
space: writable, owned read-only, read-only, nil access, and unused. A writable
page is obviously owned by the processor. An owned read-only page is also
owned by the processor but it is read-only. A read-only page is not owned by
the processor, but the processor knows who owns the page. A nil access page
is a memory page invalidated by the memory coherence algorithm. An unused
page is a free memory page. Table 4.1 shows a possible page type priority

assignment for different pages in a shared virtual memory space.

Page type Replacement priority
writable 1
owned read-only 2
read-only 3
nil access 00
unused 0o

Table 4.1: A page-iype priority assignment

Nil access (or invalidated) memory pages are treated the same as unused
memory pages—they all have the highest priority for replacement. This is
because if any program wants to use a nil access page, a page fault will be gen-

erated anyway. Writable memory pages and owned read-only memory pages

CHAPTER 4. IMPLEMENTATION 111

should normally have lower replacement priorities than read-only pages be-
cause some processors may want to make read-only pages from them. Writable
pages have lower replacement priority than owned read-only pages because each
writable page only has one copy in the whole shared virtual memory system.
The page-type priority assignment can be affected by the architecture of the
target multiprocessor and the memory coherence algorithm used. Optimal de-
cisions require empirical data on the particular implementation environment.

For a single address space implementation, the shared virtual memory sys-
tem maintains a number of page sets, each for the pages with the same page-
iype priority. Each set is ordered by its last reference time such that the system
can efficiently find the least recently used page in it. For convenience, a set is
denoted by Spri, where prio is the page-type priority. For example, the unused
pages and nil access pages are in Se,. Assuming that there are k page-type
priorities in addition to S, the following algorithm can be used to find a page
for replacement for a single address space implementation:
Algorithm 4.8 FindPage

1. If S is not empty, delete a page p from S, and return p.

2. Find the highest replacement priority page p by using equation

prioreplacc = priolypew + (t - tlaal)

from the page-type set S;, 7 =1,...,k, and return p.

In this algorithm the priority computation is performed & times, one for each
set. The algorithm is guaranteed to find the page with the highest page re-
placement priority.

For a multiple address space implementation, finding a page for replace-
ment is more complicated. Recall that the page replacement problem in the
traditional virtual memory system is solved by the concept of working set.
Peter Denning has clearly defined the working set of the traditional systems
[Denning 80]: .

CHAPTER 4. IMPLEMENTATION 112

“The working set is usually defined as a collection of recently refer-
enced segments (or pages) of a program’s virtual address space.”
The concept of “recently referenced” is not applicable to the shared virtual
memory because nil access pages are not in the working set although they
might be referenced recently. The working set in a shared virtual memory
system is defined as a collection of low replacement priority pages of an address
space.

Furthermore, instead of using the virtual time of each heavyweight process
to bound the size of a working set, the working set size for each address space
is fixed [Levy 82]. This strategy ensures that each address space has at least
some number of pages in memory and they can never be replaced by the page
faults in other address spaces. The memory pages that are not in any working
set can be replaced by the page faults in any address spaces. Therefore, the
shared virtual memory system needs a global data structure to keep track of
these pages and a data structure for each working set.

The global data structure is a collection of page sets, one for each page-type
priority except that there should be only one S,, in the whole system. The
working set data structure is the same as the single address space implemen-
tation. Since the size of each working set is fixed, when a new memory page is
added to.a working set, the page with the highest replacement priority will be
deleted from the working set and put into the glotal data structure.

The following is an algorithm for finding a page in a multiple address space
implementation:

Algorithm 4.9 FindPage

1. If S, is not empty, delete a page p from Sco, and return p.

2. Find the highest replacement priority page p by using equation
priorcplace = priolypew + (t - tlaat)

from S;, in the global data structure, i = 1,...,k; if p is found, return p.

CHAPTER 4. IMPLEMENTATION 113
3. Find the highest replacement priority page p by using equation

priorcplace = priolupcw + (t - 5laal)

from S;, in the working set of the faulting process, ¢ = 1,..., k, and return
p.
This algorithm is more general than that for the single address space imple-
mentation. The one for single address space implementation simply does not
have working sets.

Unfortunately, it is impossible to compute replacement priorities using Equa-
tion 4.1 unless there is special hardware support. The only popular hardware
support in most available machines is to use a usage bit per page frame and
keep the bits aside in a special area of the primary memory space. To live
with the existing hardware, one needs to approximate the computation of page
replacement priorities.

A simple way to approximate page replacement priorities is to use the idea
of widely-used CLOCK replacement algorithm [Belady 66, Easton 76, Carr 81}.
The original CLOCK algorithm is to use a roving pointer scanning through the
page frames of main memory, skipping used frames and resetting their usage
bits. The first page frame with its usage bit off is chosen for replacement. The
roving pointer acts-as the hand of a clock.

For the page replacement priority scheme, one can apply the idea of the
CLOCK algorithm to each page set instead of to the whole main memory.
Each page set is represented by a circular list with a roving pointer. When
the procedure FindPage tries to find the highest replacement priority page
from a page set S;, it scans through the pages in the set starting from the
roving pointer. The first page with its usage bit off is chosen as the highest
replacement priority page in S;. If all bits are set, take the page that the roving
pointer points to. After executing FindPage, the system resets all the usage
bits. When a page is added into a page set, it is always inserted before the

roving pointer so that it has the lowest replacement priority in the next search.

CHAPTER 4. IMPLEMENTATION 114

To preserve the page-type priority, each page set has a counter indicating
consecutive deletions from the set. Each page set also has an upper bound on
the number of consecutive deletions allowed. A counter will be set to O if it
reaches its upper bound. FindPage can use the following equation to crudely

approximate Equation 4.1:
PP0replace = PriOyp. — counter (4.2)

for the highest replacement priority page in each page set.

There are clearly other possible approximation methods. For example, the
working set in the shared virtual memory system can be redefined by using the
parameter of time instead of a fixed size. These design choices are left for the

system designers.

Replacement on Local Disks

This section considers page replacement in a shared virtual memory system
implemented on a multiprocessor in which each processor has its own disk
or some other kind of secondary storage. A typical example is a network of
workstations. For convenience, we assume that each processor has an infinitely
large secondary storage space.

The shared virtnal memory system on this architecture has two kinds of
memory page faults in a physical memory: disk page fault and shared virtual
memory page fault. A disk page fault causes a page to move from disk to
memory. A shared virtual memory page fault can be either a read page fault
or a write page fault which may cause the shared virtual memory mapping
managers to bring a page into memory from another processor.

When a memory page is chosen for replacement, the page is either thrown
away or saved on disk. In a traditional virtual memory system, a page is written
back to disk if it is dirty; otherwise, it will be thrown away. In a shared virtual

memory system, a page will be thrown away if it is not dirty; but a page might

CHAPTER 4. IMPLEMENTATION 115

be thrown away even if it is dirty. Table 4.2 shows a replacement strategy for

a dirty page.

Page type Replacement strategy

writable backup
owned read-only backup or throw away
read-only throw away
nil access throw away
unused throw away

Table 4.2: A replacement strategy for a dirty page

Whether a read-only page should be thrown away depends on the cost of
transferring a page via the communication link and the cost of moving a page
between memory and the disk because a read-only page can be brought back
from its owner via the communication link. The cost of a read-only page re-

placement by using the disk is:
Creplace = Cuyrite + PCread (43)

where Cyepiace is the average cost of a page replacement, Cy,y. is the cost of
writing a memory page to disk, Creqa is the cost of reading a memory page from
disk, and p is the probability of the next fault on the page. According to the
principles of localities of programs, p is close to 1. The cost of a read-only page

replacement by using the network (throwing away) is:

Creplacc = pCretwork (4.4)

where Cretwork is the cost of moving a page from one processor tc another. In
a network of workstations, a number of diskiess processors usually share one
disk server. If this is the case, C,.q4 is about the same as Chretwork if the system
uses the dynamic distributed manager algorithiﬂ because the current processor

knows the true owner of the page. It is clear that a read-only page should

CHAPTER 4. IMPLEMENTATION 116

be thrown away in this case. Even if the disk is not shared, a read-only page
should be thrown away as long as Cpetwork is less than 2C, ..

The replacement of an owned read-only page is a litile more complicated. In
order to throw the page away, its ownership must migrate. Such an operation
costs a remote operation to change the remote page table. The operation may
also increase the time for locating the owner of the page when another processor
has a fault on the page. If the increased cost in the future for locating the
owner is ignored, the cost of an owned read-only page replacement by using the

network (throwing away) is:
Crcplace = Crpc + anctwork (4.5)

where Cyy, is the cost of a simple RPC. Although in many existing high per-
formance system implementations [Birrell 83, Cheriton 84|, C,p is less tﬁan
Curite, While Crerwork is about the same as Cj.,q, it is not a good idea to throw
an owned read-only page away because there is no guarantee that there is a
read-only page on at least one other processor after read-only pages are thrown
away. '

To throw a writable page away, ownership of the page must migrate. Since
the page is writable, there is no read-only page anywhere in the system; so an
ownership migration includes moving a network page in addition to a simple

RPC. The cost can be expressed by:
Creptace = Crpe + (1 + p)Cretwork- (4.6)

This is greater than Equation 4.5. Furthermore, other processors have a higher
probability of spending more time locating the owner of the page if they have
faults on the page because the new owner is the only processor from which
they can make read-only pages. It is probably a good idea to save a writable
page onto disk for replacement, although this i§ still an architecture-dependent

problem.

CHAPTER 4. IMPLEMENTATION 117

Replacement on Existing Systems

When a shared virtual memory system is implemented on top of a traditional
operating system, one may need to consider how to integrate a shared virtual
memory page replacement with the existing virtual memory system page re-
placement. In this kind of implementation environment, each processor has
a virtual memory implementation. For simplicity, we assume that the virtual
memory address space on each processor is large enough.

The simplest way to integrate a shared virtual memory page replacement
with an existing virtual memory system is to put both the shared virtual mem-
ory address space and its page table into a traditional virtual memory space
without doing any page replacement work. Both the page table and the shared
virtual memory space will be paged in and out according to the page replace-
ment algorithm of the existing virtual memory system. In most existing sys-
tems, the algorithm is a form of approximate LRU.

While this approach is simple, it has a number of disadvantages. First of
all, the page table and the shared virtual memory space are treated in the
same way; it is possible that the page table uses too many or too few physical
memory pages. Secondly, page replacement based only on last-reference time
is probably not the best method, as discussed in Section 4.2.4. An obvious
example is that nil access pages may not be chosen for replacement because
they are referenced recently. Thirdly, the replacement strategy is not fair; for
example, a nil access page replacement may cause the system to save the page
onto disk. Another problem is that the page table may need a large address
space.

To improve the shared virtual memory implementation on top of an existing
virtual memory system, one may consider altering the existing virtual memory
system. To solve the problem of using too many pages or too few pages for
the page table, one can use a call to enforce sweeping out a memory page. If

it is possible to make a call to bring in a given page, other tricks can improve

CHAPTER 4. IMPLEMENTATION 118

performance.

The fairness problem of page replacement can be partially solved by chang-
ing the attributes of memory page frames. When a memory page is invalidated
by the memory coherence algorithm, the page becomes nil access and it will be
marked “not dirty” and “never referenced”. It also should be removed from the
working set of the current address space. If all this can be done, the existing
virtual memory page replacement algorithm will be able to treat it as a page
with higher replacement priority. For read-only, owned read-only and writable
pages, there is no obvious way to solve the problem other than changing the
existing virtual memory page replacement algorithm, which is difficult.

A solution to the page replacement for page table is to put the page table
into the system virtual memory address space. When the system builders decide
to have a system-mode implementation, this comes naturally.

The above modifications may enhance the performance of the shared virtual
memory performance substantially when an application requires a large address
space. But to make the whole system work, one would need intricate knowledge

of the existing system.

Replacement Among Memories

When a shared virtual memory system is implemented on a multiprocessor in
which each processor has a small memory (either physical or virtual), the page
replacement algorithm will differ from that which has been discussed. An exam-
ple architecture in this category is a hypercube multiprocessor; each processor
has a relatively small physical memory and there is no direct connection to
secondary storage. In this architecture, when a page is chosen for replacement
and needs to be saved, the only way to replace the page is to save it into the
memory of another processor. Memory pages do not need to be marked “dirty”
because every page is dirty. The pages in S,, will be thrown away. A read-only
page will also be thrown away because it camr be found from its owner. An

owned read-only page requires an ownership migration. A writable page needs

CHAPTER 4. IMPLEMENTATION 119

to have both page saving and ownership migration.

The following is an algorithm for replacing an owned read-only page:
Algorithm 4.10 ReadOwnerMigrute(p, Hint)

1. ¢ = FindProcessor(Hint).

2. Send a request for ownership migration of page p to processor ¢.

3. If the request is accepted and there is a request for the page, send the

page to processor ¢; set the prob_owner of page p to ¢ and return.

4. If the request is accepted, then set the prob_owner of page p to ¢ and

return.
5. If the reqneét is rejected, call ReadOwnerMigrate(p, Hint).
Algorithm 4.11 Server
1. If there is a read-only copy of p, accept the request, make the current
processor to be the owner of p and return.
2. p' = FindDisposablePage().

If p’ = nil, send a reject reply and return.

B

- Accept the request and send a request for the page, change received page
p to p/, change the virtual memory mapping, make the current processor

to be the owner of p, set the page to be read-only and return.

If the destination processor has a read-only copy of p, this algorithm can prob-
ably avoid moving a page. But it does not always avoid page moving, because
read-only pages can be thrown away.

The algorithm for replacing a writable page differs slightly. When the server
accepts a request for ownership migration and the page itself, it will set the
page to be writable instead of read-only. When a writable page is replaced,
everything needs to be moved to another processor; there is no alternative.

Procedure FindDisposablePage tries to find a disposable page. A dispos-
able page is either a page in Sy, or a read-only page. The procedure first tries

to find a page in S,. If Sy, is empty, the procedure tries to find a read-only

CHAPTER 4. IMPLEMENTATION 120

page with the highest replacement priority from S,. If such a page does not
exist, the procedure returns nil.

Procedure FindProcessor returns a possible destination processor. Its main
goal is to find a processor in the least expensive manner. Ideally, the procedure
finds a processor with

1. aread-only copy of the replaced page if the request is to replace an owned

read-only page,
2. an unused or nil access page (in S,), or
3. a read-only page that has the highest replacement priority in the union
of S,’s on all the processors.
To achieve this, the procedure needs the up-to-date information about |Sw.| and
S, of each processor. Unfortunately, this is not available.

A reasonable heuristic method is to maintain a global table NodeInfo on
each processor. NodeInfo is a vector of IV records. Each record has two fields:
nils and reads where nils is the latest information about [Se| and reads is the
latest information about |S,|. NodeInfo is initialized at the initialization stage
and maintained by procedure FindProcessor and the replacement algorithm.
The argument Hint provides the procedure with information about the copy
set of page p and a roving pointer indicating the last processor being tried. The
following is an algorithm for FindProcessor:

Algorithm 4.12 FiﬁdProcessor(Hint)

1. i = Next(0,Hint.copyset); delete ¢ from Hint.copyset; if ¢ # nil, return
7.

2. Find ¢ such that 7 has the maximum value of NodeInfo[;7].nils where
J=1,...,N;if NodeInfo[¢].nils # O, return 1.

3. Find ¢ such that 7 has the maximdm value of NodeInfo[j].reads where
J=1,...,N; if NodeInfo[i.].reads # 0, return 7.

4. Advance Hint.rover by one (modulo N} and return Hint.rover.

CHAPTER 4. IMPLEMENTATION 121

This procedure tries to find a processor with a read-only copy first. If it fails,
it tries to find a processor with a disposable page. If it still fails, it returns a
processor number in a round-robin style. When processor 7 sends a request to
processor j, NodeInfol i] will be packed into the request. Similarly, processor
7 packs NodeInfo[j] into the reply. Upon receiving a request or reply, a
processor will unpack the information and update the corresponding record in
its local NodeInfn. This way it does not introduce any additional packets in
the replacement strategy and prevents FindProcessor from making incorrect
guesses. Note that all the procedures in the algorithm are atomic operations
implemented by some ocking mechanism.

The main concern with Algorithm 4.2.4 is whether the page replacement
algorithm terminates and under what condition it does. The following theorem
answers the question: '
Theorem 4.1 The page replacement algorithm will terminate if the size of the
shared virtual memory address space, m, is bounded by:

N
m< gm,- - I?Zalxm; - N

where m; is the size of the memory space on processor ¢.

Proof: By contradiction. Assume processor ¢ has a page fault that causes
the page replacement algorithm not to terminate. When this happens, the
requesting processor is rejected 'by all other processors. Let us count how many
pages there are in the shared virtual memory system to make this happen.
A processor needs to move a page to another processor only when the page
for replacement is owned by the processor itself, so there is at least one page
charged to the shared virtual memory space from this processor. Since all
the procedures in the algorithm are atomic, there is at most one read-only page
being made on a processor. Therefore, processor j rejects a replacement request
when

1. its memory has m; — 1 pages owned by itself and a read-only being made

for a process on processor 7, or

CHAPTER 4. IMPLEMENTATION 122

2. its memory has m; pages owned by processor j and there is no read-only
page being made.

Therefore, at least m; — 1 pages are charged to the shared virtua} memory space

from processor j. Suppose the requesting processor number is z, there are at

least

N
Zm,- -m,— N

i=1
pages charged to the shared virtual memory space. Thus, the smallest shared

virtual memory space that can possibly make the algorithm terminate is

N
N
m > E m; ~maxm; — N
=1 i=1

which is false. O

In order to enlarge the shared virtual memory space in a system, a processor
can certainly try to find a disposable page in its memory when it failed N — 1
times. The disadvantage of the algorithm is the unfairness of page replacement
on destination processors. For one, it uses FindDisposablePage instead of
using FindPage. Using FindPage may introduce two problems. One is that

the maximum safe size of the shared virtual memory is reduced to
N
m< mal:c m;.
i=

The other problem is that when a destination processor is allowed to replace
a page owned by itself, a nested ownership migration may be generated. In
order to avoid a deadlock, the replacement algorithm has to remember which
processors are on the requesting path so that the last requesting processor will
not try to generate a loop.

This page replacement algorithm can also apply to the multiprocessors in
which each processor has a large address space but does not have a large virtual
memory space. Thus, it is possible to implement a shared virtual memory

almost as large as the sum of all the virtual memory spaces in the system.

CHAPTER 4. IMPLEMENTATION 123

4.2.5 Integration of Memory Coherence Algorithms

As mentioned in Chapter 2, there are many memory coherence algorithms. I
have shown that the dynamic distributed manager algorithm is good when the
contending processor set is small. The fixed distributed manager algorithm,
on the other hand, is good when the contending processor set is large. This
section investigates the applications of different memory coherence algorithms
to different kinds of pages.

The first issue in integrating memory coherence algorithms is to decide the
granularity of the shared virtual memory space for the different algorithms.
The smallest memory unit that uses the same memory coherence algorithm
can be a page, a segment, or any predefined number of pages. Such a unit is
called a section. A simple implementation of the idea uses a table that contains
the page type information for each section. The page type for each section
can be initialized at the initialization stage. When a user program allocates a
piece of memory, it can change the page types of the section that enclosed the
allocated piece of memory.

For every page fault, its page fault handler dispatches control to the ap-
propriate memory coherence algorithm according to its page type. The page
fault servers can be modified in such a way that they combine the functionality
of both the dynamic distributed manager algorithm and the fixed distributed
manager algorithm.

This approach can exploit the advantages of different memory coherence
algorithms. The disadvantage is that it uses extra space for the page type table
and pays the cost of dispatching.

CHAPTER 4. IMPLEMENTATION 124
4.3 Process Management

4.3.1 Process control primitives

The speed of process control primitives is important for a shared virtual memory
implementation. For example, if a parallel program creates k processes on one
processor, runs them on N processors, and joins them together on one processor,

the speed of the program can be roughly expressed by:

k . ?— Cezecute(t
C= Z(Ccrcau(i) + Cmigrale(i) + Cnolf'/u(z)) + E;:T(k,]\;)&)-

i=1

+ Cauerluad

where Cira(?) is the creation time of process 7, Chrmigrate(?) is the migraration
time of process ¢, Cpotigy () is the notificatior time of process #, Cezecute (1) is the
execution time of process ¢, and Coyerneaq is the overhead of parallel computation
which may be dependent on N. If the granularity of the parallelism in the

program is fire, it is possible that
Ccrcate(i) + Cmiyrale (1) + Cnalify(i) 2 Cc.:ecule (1')) for ¢ = 17 ey k.

In this case, the speed of the parallel execution of the program is slower than
the sequential execution of the program. So, C.reae (%), Comigrate(t) and Crosigy ()
can set a lower bound on the granularity of the parallelism in the program.
Although in the shared virtual memory system, Chigrate(t) and Croify(?)
may dominate Cereate(t) in the programs in which processes need to migrate,
fast process creation is still desirable for the programs in which processes do
nct need to migrate. The trick used in many systems for light weight process
creation is to maintain a free list of preinitialized Process Control Blocks (PCB)
[Birrell 84]. A process creation operation binds necessary values to a PCB and
puts the PCB into ready queue. Binding usually includes such values as PC
value, arguments, and the data pointer register value. Since the stack of the
process and other information are preinitialize_&, the cost of a process creation

can be no slower than a few procedure calls.

CHAPTER 4. IMPLEMENTATION 125

Process migration is a simple RPC that moves a process from one processor
to another. In order to make the operation fast, one may consider making pro-
cess migration an asynchronous remote operation, that is, sending a request to
another processor and returning without waiting for its reply. A process migra-
tion sometimes can be done by creating a process remotely if the programmer
(or the compiler) knows that the process will be started on another processor.
Usually creating a process requires setting one or two registers such as stack
pointer (SP) register and data block (DB) register, but a process migration
needs to transfer all registers. A process creation may never need to allocate a
stack if there are preinitialized PCBs available, but a process migration needs
to move some pages in its stack because the memory pages of the stack have
been allocated on the source processor. So, creating a process remotely can
avoid the overhead of moving many register values and some portion of the
process stack.

When a process terminates, it usually checks to see if there are awaiting
processes that have performed join operations. If there are, the termination
operation will perform a process notification, an internal operation that can be
either local or remote. The remote process notification can be asynchronous
because it does not matter which waiting process gets notified first. If there is
more than one waiting process on a processor, the notifications can be merged to
a single RPC. The recla.matiqn of the PCB of a terminated process is usually
done when its processor is free or when there is nc raw PCB available for
creating new processes. The termination operation is like a lazy person who

finishes eating and does not intend to clean his dishes; but it does save time.

4.3.2 Process Synchronization

A process synchronization mechanism is a set of primitives with which clients
control concurrent programs. The primitives should be transparent to pro-

cesses. A process should be able to use synchronization primitives to synchro-

CHAPTER 4. IMPLEMENTATION 126

nize with aay process without knowing which processor it is on. Any one of
the currently favored mechanisms, such as semaphores [Dijkstra 68], monitors
[Hoare 74], or eventcounts [Reed 79], will probably be sufficient for applications.
In a shared virtual memory system, it is possible to implement a process
synchronization mechanism based on either global memory or message passing.
This section uses an eventcount implementation as an example of implementing
a mechanism efficiently.
An eventcount synchronization mechanism has four basic operations:
e Init(ec) — initializes an eventcount.
® Read(ec) — returns the value of the eventcount.
¢ Await(ec,value) — suspends the calling process itself until the value of
the eventcount reaches the value specified.
® Advance(ec) — increments the value of the eventcount by one and wakes
up awaiting processes.
After an eventcount is initialized, any process can use it without knowing where

it resides.

Global Memory Implementation

In an eventcount mechanism based on global memory, the data structure of
an eventcount is stored in the shared virtual memory space. Since the shared
virtual memory mapping managers guarantees that the memory is coherent, a
reference to the data structure of an eventcount will be correct if each primitive
operation is atomic, that is, all the operations are performed in a mutually ex-
clusive way. Reed has given algorithms for implementing the primitives without
using process queues [Reed 79]. Although these algorithms present the ideas
cleanly, in real implementations, process queues are usually used.

With a process queue for each eventcount, an atomic operation implemen-
tation can be done on available architectures by using a test-and-set instruction

or by prohibiting interrupts. Using a test-and-set instruction on a lock in the

CHAPTER 4. IMPLEMENTATION 127

shared virtual memory space is not a good idea because the instruction can
cause a write page fault and a page movement when the page containing the
lock is on another processor. When all the processors are trying to use test-
and-set instructions on the same lock, the cost can be substantial.

Prohibiting interrupts may look like an easy way to solve the problem,
but it is not. One needs to make sure that the memory references to any
data structures during each operation do not generate any page faults. So,
before prohibiting interrupts, all the related memory pages should be wired
into memory. An efficient way to wire a page in a shared virtual memory
system is to use a memory page map. Each bit in the map is associated with
a memory .page. Before a page in the memory is moved to another processor
or disk, its associated bit is checked. If the bit is 0, the page can be moved;
otherwise, the moving operation is delayed. The size of this map is not so big
because it only needs to take care of the physical memory. For a 4M byte
memory with 1k bytes per page, 512 bytes will be sufficient. The detailed
algorithm for implementing the four primitives is omitted because it is an easy
matter once the problem of atomicity is solved.

The advantage of this approach is that one does not need to worry about the
transparency of eventcounts and the consistency of their data structures. By
simply relying on the shared virtual memory mapping managers, more than one
processor can concurrently read an eventcount while no processor is performing
Advance. Although the approach is simple and attractive, a reference to an
eventcount may cause a page fault. A page fault and a page movement usually
cost more than a simple RPC. One the other hand, when a processor perfoms
a number of primitive operations on the same eventcount, probably only the

first one is a remote operation.

Message Passing Implementation

In a message passing implementation, the data structures of eventcounts are

stored in the private memory portion instead of the shared virtual memory

CHAPTER 4. IMPLEMENTATION 128

space. The primitive operations are simple RPCs that consistently access the
data structures.

For this implementation, one must first solve the transparency problem.
When an eventcount primitive operation executes on processor %, it needs to
know where the eventcount is. If it is on the same processor, the operation will
be local; otherwise a simple RPC should be used or the eventcount should be
migrated to processor 7.

Locating an eventcount can be done by a mapping function M{ec,7) that
returns a pair (processor,local_address) that tells where the eventcount is.
The implementation of the function depends on how the data structures of
eventcounts are arranged: statically or dynamically. A static arrangement
can be either centralized or distributed. Dynamic arrangement is obviously
distributed.

A simple, static, centralized arrangement is to put all the eventcounts on

one processor, say process 1. In this case, the mapping function is:
M(ec,?) = (1, address(ec)).

The obvious disadvantage of this arrangement is that eventcount operations
may be inefficient when many processors are trying to access eventcounts at
the same time. Even if the processes are accessing different eventcounts, they
all have to be done on processor 1. Another disadvantage is that many Init
calls will be remote operaticns. If every processor is assumed to have the same
probability of using Init and there are & Init calls, then the number of remote
operations is:
(N -1)

N,- = TI.

When N is large, most of the Init calls are remote operations.

A static, distributed arrangement is to distribute eventcounts on different
processors. Each processor reserves a space called ec_space, which is divided
into IV equally sized subspaces. All the ec_space’s have the same base address in

their private memory portions. It is convenient to make the size of a subspace

CHAPTER 4. IMPLEMENTATION 129

the power of 2. When an Init is executed on processor %, the eventcount is

initialized in the ¢-th subspace on processor ¢. Such an arrangement is shown

in Figure 4.3.
ec_space 1
ec_space 2
ec_space N
Processor 1 Processor 2 Processor N

Figure 4.3: Eventcounts in private memories.

If s is the size of the subspace and b the base address of the ec_space, the
mapping function can be defined by:

(address(ec) — b)
s

M(ec,?) = (, (address(ec) — b) mod s).

After subtracting from the base address of the ec_space, the last log s bits
of the eventcount will be the offset within the subspace and the [log N bits
before them will be the processor number. The size of the ec_space can be
small because another ec_space can be allocated when the In:t operation runs
out of a subspace. All the initialization operations in this approach are local
operations, so the mapping function is efficient. -

This approach can be further optimized if every processor uses all the sub-
spaces rather than only the i-th subspace on processor i. When a process on
processor ¢ performs an eventcount operation on an eventcount residing on

processor j, the operation saves the value of the eventcount into the place cor-

CHAPTER 4. IMPLEMENTATION 130

responding to its ec_space in the j-th subspace on processor ¢. Those values,
though they may not be up-to-date, can then be used in the Awast calls to re-
duce remote operations. If the eventcount value in the corresponding subspace
is not less than the value specified in Await, then there is no need to get the
value from where the eventcount resides.

The static, distributed arrangement is not as simple as the static, centralized
one but it can solve the potential problem of inefficiency. The disadvantage
is that once an eventcount is initialized, it stays. When a remote processor
performs many operations on the same eventcount, they all have to be remote
operations.

A dynamic arrangement allows eventcounts to migrate from one processor
to another. The work involved is essentially the saiae as that of the memory
coherence algorithm if the system allows concurrent reads while there is no
write (see Chapter 2). In order to access a migrated eventcount, a forwarding
pointer mechanism may be needed [Fowler 86), which, of course, requires a more
complicated mapping function.

The message passing implementation of an eventcount mechanism also has
the same atomic execution problem as the global memory implementation, but
it does not need to wire memory pages. In this sense, a message passing imple-
mentation is simpler. In general, a message passing implementation can exploit
the efficiency provided by the simple RPC mechanism, and the atomic prob-
lem is easy, but message passing introduces the complexity of the transparency
problem. The static, centralized arrangement is relatively simple but it may in-
troduce inefficiency when many processors are executing eventcount primitives.
The static, distributed arrangement can solve the problem to some degree, but
it requires a more complicated data structure design. The dynamic arrange-
ment may provide the best performance but the implementation is much more
difficult,.

CHAPTER 4. IMPLEMENTATION 131

4.4 Dynamic Memory Allocation

When a process wants a piece ot: niemory in a shared virtual memory address
space, it must explicitly allocate it. Similarly, the allocated piece of memory
should be freed explicitly when it is no longer needed.

Dynamic memory allocation for 2 uniprocessor environment is a well-known
problem and has been studied since the beginning of operating systems devel-
opment. Some simple memory allocation algorithms, such as “boundary tag”
and “buddy system”, were shown to be efficient in theory [Knuth 73] and are
widely used in practice.

Since, from a programmer’s point of view .2 shared virtual memory address
space on a loosely coupled multiprocessor is, in many ways, the same as a single
address space on a uniprocessor, many dynamic memory allocation algorithms
for a uniprocessor environment can be used directly with a simple centralized
control. * .

This section shows how to apply a dynamic memory allocation algorithm
—-boundary tag—to a shared virtual memory address space and discusses the
drawbacks of the direct application; it also proposes some modifications to
improve the algorithm for the shared virtual memory environment. Although
the discussion follows one example, it presents a general way of modifying
an existing memory allocation algorithm to fit into a shared virtual memory

system.

4.4.1 Boundary Tag

The boundary tag algorithm was designed by Knuth in 1962 and was described
in his book in detail [Knuth 73]. The idea of the algorithm is to maintain a
free list of memory blocks, Avail, so thai a “hrst fit” or “best fit” strategy
can be used to allocate a memory block. Such a list is doubly linked so that
the algorithm can search blocks in any direction. A tag is put at one end of

exch memory block. It has four fields: state, size, forward link, and backward

CHAPTER 4. IMPLEMENTATION 132

link. State is a bit indicating whether the block is allocated. Size indicates
the size of the memory block. The two links are for the doubly linked list
Avail. To improve readability, the algorithm uses four functions STATE(addr
), SIZE(addr), FLINK(addr), and BLINK(addr) to return the four fields
of memory block starting at addr.

The algorithm below is taken from Knuth’s book [Knuth 73] with some
modifications using the conventions here. The algorithm consists of three pro-
cedures: Initialize, Allocate, and Free. The following is an algorithm for ini-
tialization:

Algorithm 4.13 Initialize(addr, n)

Avail := addr;

Rover := addr;

STATE(addr) := FREE;
SIZE(addr) := n;
FLINK(addr) := addr:
BLINK(addr) := addr;

It gives initial values to the free list head Avail and roving pointer Rover, and
initializes the whole memory as a free memory block.

Allocate tries to allocate a piece of memory by sequential search follow-
ing the forwarding pointers starting from the roving pointer. The algorithm
essentially performs the “first fit” strategy:

Algorithm 4.14 Allocate(n)
IF Avail = O THEN RETURN fail;

addr := Rover;
WHILE SIZE(addr) < n DO BEGIN
IF STATE(addr + SIZE(addr)) = FREE THE¥
Collapse(addr, addr + SIZE(addr));
ELSE
addr := FLINK(addr);
IF addr = Rover THEN RETURN fail;
END;

Rover := FLINK(addr);

CHAPTER 4. IMPLEMENTATION 133

k := SIZE(addr) - n;
IF k < ¢ THEN BEGIN
Rover := FLINK(Rover);
BLINK(Rover) := BLINK(addr);
FLINK(BLINK(addr)) := Rover;
END
ELSE BEGIN -
new_addr := addr + n;
SIZE(new.addr) := k;
STATE(new.addr) := FREE;
SIZE(addr) := n;
END;

STATE(addr) := ALLOCATED;

RETURN addr:;
Note that when a block is not large enough, the algorithm merges the current
block with its adjacent memory block. Since there is only one tag at one end
of a memory block, there is no way to do all collapsing in Free. If the current
biock is larger than the caller needs, the algorithm will split it into two blocks,
one for current allocation and the other for future allocation.

Free tries to collapse the freed block with its adjacent memory block. The

freed block will be put into the free list.
Algorithm 4.15 Free(addr)

STATE(addr) := FREE;
IF STATE(addr + SIZE(addr)) = FREE THEN
Collapse(addr, addr + SIZE(addr));
FLINK(addr) := Avail;
BLINK(addr) := BLINK(Avail);
BLINK(Avail) := addr;
Of course, it is possible to insert the freed block at the roving pointer instead
of at Avail.
For the shared virtual memory system, the algorithm can be used if the
three operations can be done mutually exclusively. A monitor system will work
just fine [Hoare 74]. Thus, correctness is not a problem.

Performance, however, is a problem. Since a tag is a part of a memory block,

CHAPTER 4. IMPLEMENTATION 134

any reference to a tag field may cause a page fault. When the Allocate procedure
searches for an available memory block, it may have as many page faults as the
number of blocks traversed. When collapsing two blocks or splitting a block,
the procedure may also cause page faults. The upper bound of the number of

page faults for Allocate is expressed by:

Mrdueru +2 collapase + Napll'l +4

where Niayerse is the number of blocks traversed while searching, Neottapse is
the number of blocks collapsed, and Nypiit is the number of blocks split. The
constant 4 comes from modifying the tag of the current block, accessing Avail,
setting the forward link of the previous block, and setting the backward link
of the next block. A collapse operation may cause two page faults because it
needs to modify the tag of the adjacent block and the link of the next block of
the adjacent block. Similarly, Free may cause up to six page faults: changing
the tag of the current block, changing the forward link of the previous block,
accessing to Avail, changing the backward link of the next block, and collapsing
two adjacent blocks.

The true number of page faults for Allocate and Free are hard to calculate
because they depend on the number of processors in the system and where the

memory blocks are used.

4.4.2 One-level Centralized Memory Management

One way to reduce the number of page faults in the direct method is to have
a processor as the central memory allocator. All the memory allocations and
deallocations are done on the allocator. The operations on processors other
than the allocator need to use the remote operation mechanism to perform the
operation. Since the allocation information is maintained in a monitor style,
the correctness is clear. By doing this alone, it reduces the page faults caused

by the references to Avail.

CHAPTER 4. IMPLEMENTATION 135

In order to reduce the number of page faults caused by the references to
the tags associated with memory blocks, the tags are stored in a separate place
on the allocator processor rather than at the beginning of the memory blocks.
When the allocator accesses the tags, there should not be any read or write
shared virtual memovy page faults because they are on the same processor.

A hash table can be used as the data structure for the tags. For a given
starting memory block address x, a hash function TAG(z) will return the tag
of the memory block. A tag here is a record with four fields: state, size,
flink, and blink. The modification of the algorithm to use this mechanism is
rather straightforward. In Initialize, the hash table is initialized before doing
anything else. In Allocate and Free, a reference to any field of a tag requires
using the hashing mechanism to get the tag first.

With this centralized memory management approach, neither Allocate nor
Free will generate any shared virtual memory page fault. Obviously, it is supe-
rior to the direct method. But an Allocate or Free called from any processor

other than the allocator is still a remote operation.

4.4.3 Two-level Centralized Memory Management

Two-level centralized memory management reduces the number of remote op-
erations in memory allocations.

A straightforward two-level memory management is to let each processor
take care of most local memory allocations. There is still a processor acting
as the central memory allocator on which the memory allocation algorithm is
exactly the same as before. But the memory allocation algorithm on other
processors is different. Instead of making a remote call to the allocator each
time, a non-allocator processor will allocate a big chunk of memory and main-
tain it by a local memory allocation algorithm, so that most allocations and
deallocations will be local.

The local memory allocation algorithm can be anything as long as it main-

CHAPTER 4. IMPLEMENTATION 136

tains the big chunks of memory. For example, the boundary tag algorithm can
be used again. There is no need to put the tags of memory blocks of each
allocated big chunk of memory into a separate place because once a big chunk
of memory is allocated, memory references inside the chunk will not cause any
shared virtual memory page faults.

The local memory allocation algorithm has its own free list Avail and roving
pointer Rover. Initially, the free list is empty. The first memory allocation
operation will result in requesting the central memory allocator for a big chunk
of memory. The proper size of memory is then allocated to the original request
and the rest of the big chunk will be put into the free list. The memory
allocation operations then allocate memory from the free list until the list is
empty or the list does not contain any pieces that are big enough. In which case,
it asks the central memory allocator again for another big chunk of memory.

The alogrithm is almost the same as the unmodified boundary tag algorithm:

Algorithm 4.16 Allocate(n)
IF Avail = O THEN RETURN RemoteAllocate(n);

addr := Rover;
WHILE SIZE(addr) < n DO BEGIN
page := (addr + SIZE(addr)) / page_size;
IF (ptable[page].access = writable)
AND (STATE(addr + SIZE(addr)) =
Collapse(addr, addr + SIZE(addr));
ELSE
addr := FLINK(addr);
IF addr = Rover THEN RETURN RemoteAllocate(n);
END;

FREE) THEN

Rover := FLINK(addr);

k := SIZE(addr) - n;

IF k < ¢ THEN BEGIN
Rover := FLINK(Rover);
BLINK(Rover) := BLINK(addr);
FLINK(BLINK(addr)) := Rover;
END

ELSE BEGIN

CHAPTER 4. IMPLEMENTATION 137

new.addr := addr + n;
SIZE(new_addr) := k;
STATE(new_addr) := FREE;
SIZE(addr) := n:

END;

STATE(addr) := ALLOCATED;

RETURN addr;
The procedure Remote.illocate(n) askes the central allocator for a big chunk
of memory, allocates n bytes from it, and leaves the rest in the local free list.
Note that memory blocks are collapsed only when the tag page of the next
memory block is owned by the processor, so A4llocate does not cause any shared
virtual meniory page faults. Free might be slow, but there might be locality of
reference in it.

The size of a big chunk of memory can be chosen by the local memory

algorithm. A convenient way is to divide the whole shared virtual memory

address space into segments. The size of a big churk can be determined by:

n ,
[“1 segment_stze
segment_size

where n is the size of memory required by a local memory allocation operation.
The size of a segment should be much less than 1/N of the size of the whole
address space; otherwise some processors may never be able to do a memory
allocation.

The deallocation algorithm is troublesome because the central memory al-
locator needs to reclaim memory blocks from local free lists. There are mainly
two methods: eager and lazy. The eager method means that local memory
deallocation procedure Free returns memory blocks to the central memory al-
locator from time to time. For example, a possible solution is to use Max_size
to remember the maximum block size in the free list. Max_size raay be up-
dated in Free and Collapse. When Max_size exceeds the upper bound Bound,
the block is returned to the central memory allocator. The following is the

algorithm:

CHAPTER 4. IMPLEMENTATION 138

Algorithm 4.17 Free(addr)
STATE(addr) := FREE;

Max_size := MAX(Max_size, SIZE(addr)):
page := (addr + SIZE(addr)) / page_size:
IF (ptablel page].access = writable)
AND (STATE(addr + SIZE(addr)) = FREE) THEN
Collapse(addr, addr + SIZE(addr)):
IF Max.size > Bound THEN RemoteFree(addr);
FLINK(addr) := Avail;
BLINK(addr) := BLINK(Avail):
BLINK(Avail) := addr;
Note that the procedure RemoteFree may generate up to two memory blocks
because the central memory allocator only wants memory blocks starting and
ending at segment boundaries.

In the lazy method, the local memory deallocation does not return any
memory blocks to the central memory allocator until the central memory allo-
cator sends requests. The algorithm can be the same as above except that it
does not call RemoteFree. In this approach, when the central memory alloca-
tor runs out of memory blocks, it asks the local memory allocators for help. For
example, the ceniral memory allocator asks the local memory allocator one by
one. When a local memory allocator receives a request, it checks to see if the
largest memory block is larger than the upper bound. If it is, the memory block
is given back to the central memory allocator. Obviously, the lazy method is
better than the eager method if the central memory allocator rarely reclaims
memory blocks because the procedure Free does not have a remote operation.

All the local mewory management operations require mutually exclusions
because there may be more than one process on each processor. If it is impor-
tant to avoid mutual exclusion, the two level memory allocation mechanism can
be based on processes rather than processors. In order to do so, there should
be a free list and a roving pointer for each process. They can be stored in the
PCB of a process. The disadvantage of this approach is that the number of

local memory allocators is the same as the number of application processes. If

CHAPTER 4. IMPLEMENTATION 139

the number is rather large, the shared virtual memory system may run out of
space easily [Knuth 73].

In general, the two-level centralized memory management mechanism bene-
fits the shared virtual memory system because it reduces the number of remote
operations. But the method introduces some complexities in memory deallo-
cation and may waste some memory space. When the shared virtual memory

system has a large address space, this is not a problem.

4.5 Further Optimizations

4.5.1 Eliminating Unnecessary Rcad Page Faults

A read fault of page p is unnecessary if there follow be a write fault of p and
the distance between the two faults are within & instructions, where k is very
small.

An instruction may generate an unnecessary read page fault when the mem-
ory references of its source and destination are on the same page. For example,
instruction

MOVE (R1), (R2)

causes a read page fault by reading location (R1). If location (R2) is on the
same page as (R1), a write page fault will be generated right after the control
is returned from the read page fault handler. .

It is trivial to eliminate the one-instruction unnecessary read page fauits if
there is a mechanism to indicate the destination address of the faulting instruc-
tion in hardware. A simple way is to add the following line at the beginning of

the read page fault handler:
IF destination-page = faulting-page THEN RETURN.

The destination-page is the destination page number provided by hardware.

The faulting-page is the faulting page number.

CHAPTER 4. IMPLEMENTATION 140

When the mechanism does not exist in hardware, which is true in most
available systems, the only reasonable way is to compute the destination page
of the faulting instruction in the fault handlers. The destination-page then
becomes a procedure that returns the page number of the destination page of the
faulting instruction. The procedure needs to interpret the faulting instruction
according to the context saved. The cost of such a procedure depends on the
instruction set of the target processor.

One can apply the elimination technique for one-instruction unnecessary
read fault case to the k-instruction case if it is possible to figure out all the
write fault pages within the % instruction range. Whether it is worth doing so

is an open problem.

4.5.2 Preventing Thrashing

As mentioned in Chapter 3, the shared virtual memory system may have page
thrashing. The page-demand load balancing strategy in Section 3.3.4 uses a
detection algorithm to discover page thrashing and reduces page thrashing by
migrating processes. This section discusses how to prevent a shared virtual
memory from thrashing without doing process migrations.

Recall that traditional virtual memory systems used to have the memory
thrashing probiem until the working set concept was developed [Denning 80).
The working set idea is based on the “principle of locality” of sequential pro-
grams [Denning 72] and its implementation significantly improves the perfor-
mance of the multiprogramming environment on a uniprocessor.

The working set concept does not prevent thrashing on shared virtual mem-
ory systems. There is only one heavyweight process for each application pro-
gram, so the shared virtual memory system mainly considers paging between
lightweight processes. Another reason is that the degree of data sharing is
closely related to the parallelism of a program. If the processes in a parallel

program share data and the system implementation inhibits the processes from

CHAPTER 4. IMPLEMENTATION 141

sharing according to the traditional virtual memory working set idea, paral-
lelism may be restricted.

In addition to the page-demand load balancing strategy mentioned in Chap-
ter 3, a concept called working itme in the memory coherence mapping helps
prevent a shared virtual memory system from thrashing. The working time of
a page on a processor is the time between receiving and relinquishing the own-
ership of the page. By using the page thrashing detection mechanism described
in Section 3.3.4, the shared virtual memory system can figure out whether a
requesting page is thrashing or not. If the page is thrashing, the shared virtual
memory system can delay the requests for relinquishing the ownership until
the working time reaches a lower bound. If the page is not thrashing, the
ownership is relinquished immediately. Such an algorithm is not difficult to
implement when the page-demand process scheduling strategy is used because
the thrashing detection mechanism already exists.

Another way to prevent a shared virtual memory from thrashing is to modify
the dynamic memory allocation algorithm such that every allocation operation
always allocates a piece of memory starting and ending at page boundaries. In
other words, the minimum unit of memory allocation is a page. This simple
method effectively eliminates the page thrashings caused by frequently accessing
variables that used to be in the same page. For example, if two variables v, and
vz are in the same page p and process 1 accesses v; many times while process
2 is accessing v,, page p will start to thrash. However, if the variables are in
different pages, this thrashing will not occur. Thus, one may allocate different
pages for the variables accessed by different processes. This method does not
restrict the programmer to putting the different variables into the same page.
A programmer can always use a record to hold many variables and allocate a
piece of memofy for the record. Another alternative is to provide two kinds of
allocation calls, one for allocating memory in pages and another for allocating
memory in bytes.

So far, we have seen three ways to prevent a shared virtual memory from

CHAPTER 4. IMPLEMENTATION 142

thrashing:
¢ page-demand load balancing strategy which migrates processes to reduce
memory page thrashing,
¢ page working time which guarantees that each processor holds a page for
a certain period of time when the page is thrashing, and
¢ using distinct pages for different variables.
Although these methods are proposed for the implementation of a shared virtual
memory system, it is probably a good idea to use empirical data to justify them
first.

4.5.3 Indirect Memory Reference

Allocating memory in pages can only reduce the memory page thrashing when
variables share the same page. When processes frequently access the elements of
vectors and arrays, memory page thrashing may occur. In this case, allocating
memory in pages does not help. This section presents a strategy of trading
memory space for efficiency—indirect memory reference.

Let’s start with vectors. An indirect memory reference vector consists of
two parts, an address vector and a data domain. The address vector is a
normal vector with the same number of elements except that each element is
the address of the.corresponding data element in the data domain. The address
vector uses a consecutive piece of memory. The data domain of an indirect
memory reference vector does not require a consecutive piece of memory. An -
application program decides how to allocate memory for the data domain.

Normally, allocation of memory for the data domain of an indirect memory
reference vector depends on how to split the data structures in the application
programs. If a process mainly accesses k& elements in a vector, the data do-
main may allocate memory k elements at a time so that the vector does not
have unnecessary shared memory pages among processes. Figure 4.4 shows the

mapping between the address vector a and the data pages d; and d,, which

CHAPTER 4. IMPLEMENTATION 143

are on two different pages. The algorithm for initializing an indirect memory

reference vector is too simple to list here.

a d,
0 15
1 11 d,
2 33
3 31
4 ' 29
5 27

Figure 4.4: An indirect memory reference vector.

Since an array can be constructed by vectors, it is easy to build an indirect
memory reference array by indirect memory reference vectors. It is also possible
to construct indirect memory reference records by using an address vector and
a data domain.

The tradeoff of indirect memory reference data structures is clear. In terms
of space, this approach requires an additional space for address vectors. When
the size of a data element is not small, the space for an address vector is not
large. In terms of time, this approach needs one more memory reference for
each reference to an element in an indirect memory reference data structure
than in a traditional data structure, but this approach reduces the memory
contention which may cause memory page thrashing. The gain of reducing
memory contention is probably much more than the extra cost of using an
address vector because the cost of a memory reference is usually not comparable
with the computation cost related to a data element. Therefore, the package

for building indirect memory reference data structures is a good thing to have

CHAPTER 4. IMPLEMENTATION 144

in a library for application programmers to optimize their parallel programs.

4.6 Conclusions

This chapter has studied many engineering issues related to the shared vir-
tual memory implementation. The discussions on implementation environments
have raised some system design requirements that benefit implementing shared
virtual memory systems. On the other hand, the minimum system requirements
show that it is possible to implement a shared virtual memory system on most
existing systems. A simple RPC protocol has been informally presented for the
more efficient implementation of the shared virtual memory mapping managers
and process control primitives.

This chapter has shown how to implement shared virtual memory mapping
managers in different modes and how to support multiple address spaces. Sev-
eral page table compaction methods have been proposed and compared. For a
large-scale multiprocessor with a small memory on each processor, page table
compaction is necessary. Page replacement algorithms have been presented in
detail. The discussion on memory replacement covers how to design a page re-
placement algorithm for a shared virtual memory system and how to integrate
a shared virtual memory system with an existing virtual memory system. The
page replacement algorithm without using secondary storage is usefui for imple-
menting a shared virtual memory system on a large-scale multiprocessor. The
algorithm enables system designers to build a shared virtual memory almost as
large as the sum of all the physical (or virtual) memory spaces.

Implementation issues of process control primitives that are not in Chapter 3
have been studied here. Different approaches to implementing synchronization
mechanisms are given by showing how to implement an eventcount mechanism.

It has been shown through an example that it is not appropriate to move a
uniprocessor dynamic allocation algorithm to the shared virtual memory sys-

tem without modifications. The ideas for efficiently implementing dynamic

CHAPTER 4. IMPLEMENTATION 145

allocation algorithms have been presented by modifying a well-known sequen-
tial allocation algorithm, the boundary tag algorithm. Those ideas apply to
other existing algorithms, but these applications are not discussed.

Finally, I proposed optimization methods to improve system performance.
Eliminating unnecessary read page faults can be done by software, whereas it
is a trivial problem if hardware support exists. The methods for preventing
page thrashing are rather simple and fit with the page demand load balanc-
ing strategy. The idea of indirect memory reference is an application program
optimization technique. It can be used by compiler designers if a parallel pro-
gramming language is ever built for a shared virtual memory system in the
future.

Many problems remain open. In particular, since I have had no practical
experience implementing a shared virtual memory system on point-to-point
connection multiprocessors, the implementation issues on those architectures

are probably not covered adequately.

Chapter 5

IVY: A Prototype

This chaptef describes IVY—an Integrated shared Virtual memory system de-
veloped at Yale. Since Chapter 4 has presented and compared many of the
engineering issues of implementing a shared virtual memory system, this chap-
ter only describes the implementation of IVY with a few comments on design

decisions.

5.1 Overview

IVY is a shared virtual memory system developed for experimental purposes.
It has evolved through several stages. At the beginning of the research (in the
spring of 1984), the idea of shared virtual memory system was premature. Dur-
ing the summer of 1984, many people at DECSRC offered helpful suggestions.
Butler Lampson suggested first looking at the memory reference behavior of
some programs using shared memory, because it was not clear if a shared vir-
tual memory implementation on a loosely coupled multiprocessor would be able
to deal with many practical parallel programs.

Following Lampson’s suggestion, I looked at the assembly code of some
procedures for partial differential equations and found that a shared virtual

memory implementation was plausible. Instead of trying to verify this theoret-

146

CHAPTER 5. IVY: A PROTOTYPE 147

ically, I implemented a simple shared virtual memory based on the centralized
distributed manager algorithm. IVY I, which took a few months to implement,
took the fullest possible advantage of the Apollo operating system, Aegis, with-
out modifying its kernel code. The system performance of the implementation
was not satisfactory.

After modifying some of the kernel code of Aegis, I built IVY II based on
the centralized distributed manager algorithm. It performed well enough to
run some real experiments. While implementing IVY II, I also developed and
implemented other memory coherence algorithms: the improved centralized
manager algorithm, the dynamic distributed manager algorithm, and the fixed
distributed manager algorithm.

The most recent version of IVY II is a shared virtual memory system im-
plemented on top of the modified Aegis operating system. Ivy consists of 5
modules, namely, simple RPC, memory mapping, process management, mem-
ory allocation, and initialization. The hierachy of the system is shown in Fig-
ure 5.1.

The three top modules in the hierachy form the IVY client interface. Each
consists of a set of primitives that can be used by application programs. The
primitives are together in a library file. There are four library files of this kind,
one for each memory coherence algorithm. One can produce an IVY image by
compiling a program and binding it with the desired library. The IVY image
file can be executed on any number of nodes in the network.

Starting IVY is simple. A startup program initializes IVY on the nodes
listed in a specification file which can be either edited by hand or generated
by a program (nodes that are usually idle for long periods of time are usually
chosen for running IVY). IVY’s initialization usually takes less than a minite

because it can be done in parallel on all the nodes.

CHAPTER 5. IVY: A PROTOTYPE

Client programs

Process Memory e s .
management allocation Initialization
Simple Memory
RPC mapping

y

OS low-level support

Figure 5.1: IVY hierachy.

5.2 The Apollo DOMAIN Environment

148

IVY was developed in the Apollo DOMAIN environment [Apollo 81, Leach 82,

Leach 83]. DOMAIN is an integrated environment of personal workstations

and server computers connected by a 12M bit/sec baseband, single token ring

network. The DOMAIN environment is based on an object-oriented single-

level store system that presents a flat space of objects addressed by unique

identifiers (UIDs). A program accesses any object by presenting its UID and

asking for it to be mapped into the program’s address space; subsequently,

it is accessed with ordinary machine instructions. The whole main memory

on a node acts as an object cache based on demand paging. The DOMAIN

environment allows nodes to share objects (not memories). The true single-

level store implementation is a feature that makes the DOMAIN environment

CHAPTER 5. IVY: A PROTOTYPE 149

unique among commercial workstations.

The DOMAIN virtual memory architecture presents a virtual address space
of 2% (16M) bytes in which half of the space is reserved for the operating
system; user-mode virtual memory space is about 8M bytes. Each user address
space is divided into 1K byte pages. For a page to be usable it must be mapped
to an object (disk file). The smallest amount of virtual address space that can
be mapped is a segment of 32 memory pages.

The Memory Management Unit (MMU) of the MC68000 architecture pro-
vides each memory page frame with a set of rights (nil, execute, read, write).
They are checked at each memory reference. A memory reference to a page
with an incorrect access right results in a hardware exception.

Although the ring network supports data communication at the rate of 12M
bit/sec, the real communication speed between the memories of two MC68000
processor nodes is about 1M bit/sec [Leach 83]. My experiments confirmed this
rate.

The operating system of the DOMAIN environment, Aegis, supports mul-
tiple heavyweight processes (it is expected that later Apollo will later support
lightweight user processes). Each process has its own virtual memory address
space. A program in user mode can have its own fault handlers processing
hardware exceptions. A hardware exception in this case switches from its sys-
tem mode to user mode and proper context savings are also involved. The basic
process synchronization mechanism in Aegis is the eventcount [Reed 79].

IVY is developed on an Apollo ring in which most nodes use a Motorola
MC68000 or MC68010 microprocessor [Motorola 84] with either 1.5M or 2M
bytes of main memory. In order to make the implementation environment
consistent, IVY only operates on the MCG68000 processor nodes with private
disks. The basic hardware support of the Apollo architecture has made the

implementation of a shared virtual memory system possible.

CHAPTER 5. IVY: A PROTOTYPE 150

5.3 The Simple RPC

The simple RPC mechanism handles all the remote operations of other mod-
ules. The performance and the reliability of the shared virtual memory system
depend heavily on this mechanism. My experience shows that different imple-

mentations yield rather different results.

5.3.1 Basic Mechanism

The simple RPC mechanism in IVY is based on sending and receiving packets
and the faulting (or exception) handling mechanism.

The mechanism for sending and receiving packets in the Aegis operating
system is the lowest level means that programs in user mode can use to com-
municate between processes on different nodes. A send operation sends a packet
to a socket of a user process address space of another node. One can also send a
broadcast packet to the sockets with the same socket number on all the nodes.
When a packet is sent, it will be copied into a system memory buffer first on
the sending processor and the low-level kernel code will send it onto the net-
work. If the socket on the destination processor is opened, the packet will be
picked up and put into the specified socket and advance its associated event-
count. A receive operation always awaits the eventcount of a socket, so if the
process is doing a receive before the packet arrives, it will be suspended until
the eventcount is advanced. In this case, the packet is moved from the buffer
tc a specified asea in the user space.

The existing faulting mechanism in the Aegis operating system has two kinds
of faults: synchronous and asynchronous. Synchronous faults are generated by
the process itself. For example, an illegal instruction or access violation are
synchronous. Asynchronous faults are produced from outside of the process.
For example, one process can send a “trace fault” to another process by setting
its trace bit [Motorola 84].

The implementation of the simple RPC module in IVY I used the existing

CHAPTER 5. IVY: A PROTOTYPE 151

Aegis faulting mechanism in a straightforward way. Since the Aegis operat-
ing system supports only one thread for each user process (or address space),
the implementation used a helper process on each processor to receive all the
incoming packets. The lightweight processes of the shared virtual memory sys-
tem were implemented in another heavyweight process called the masn process.
The helper process was simple; it waits for an incoming packet at all times and
sends a trace fault to its main process if a new one is received.
In this mechanism, a synchronous simple RPC has five steps:
1. The lightweight process in the main process on processor 1 sends a request
to processor 2 and suspends itself.
2. The helper process on processor 2 receives the request in the area shared
with its main process, and sends a trace fault to the main process.
3. The main process on processor 2 dispatches the request to a server process,
and the server process processes the request and sends a reply packet back
to processor 1.
4. The helper process on processor 1 receives the reply in the area shared
with its main process, and sends a trace fault to the main process.
5. The main process on processor 1 receives the fault in its trace fault han-
dler, processes the reply, and resumes the requesting lightweight process.
The area that the helper process shares with its main process can be rather
large because the sharing is done by mapping the same file into the two address
spaces.
The implementation of this mechanism is clean, but its performance is in-
adequate. The helper process pretends to be a lightweight process but it is not.

The cost of a synchronous simple RPC is roughly expressed by:
Crpc = 2Ca + 2C'r + 4Cl|'ghl + Cproccuiny + 4chuuy + 2Ctrac¢ (5-1)

where C, is the cost of sending a packet, C, is the cost of receiving a packet,
Crrocessing 18 the cost of processing a packet, Ciyys¢ is the cost of a lightweight pro-

cess context switch, Ch.avy is the cost of a heavyweight process context switch,

CHAPTER 5. IVY: A PROTOTYPE 152

and Cirgce is the overhead of the trace fault mechanism. The first four terms in
Equation 5.1 are obviously necessary. However, the four heavyweight process
context switches are from the two receive operations by the helper processes
and the two trace faults, and can cost as much as 10 milliseconds. A simple
RPC doing nothing takes about 21 milliseconds. Clearly, such performance is
not satisfactory.

An improved version of the simple RPC mechanism uses two ad hoc tricks
to reduce overhead. The first trick is to enlarge the shared area between the
helper process and the main process to hold more information. Thus, processing
a simple RPC request is done in the helper process instead of in the main
process. This eliminates one trace fault and one heavyweight process context
switch. The second trick is to process all the simple RPC requests in the
helper process without using lightweight server processes. This eliminates two
lightweight process context switches.

Thus, in the improved mechanism, a simple RPC has four steps:

1. The lightweight process in the main process on processor 1 sends a request

to processor 2 and suspends itself.

(3]

. The helper process on processor 2 receives the request, processes the
request, and sends a reply to processor 1.
3. The helper process on processor 1 receives the reply in the area shared
with its main process, and sends a trace fault to the main process.
4. The main process on processor 1 receives the fault in its trace fault han-
dler, processes the reply and resumes the requesting lightweight process.
Although this version is conceptually simpler than the first version, it is more
complicated in implementation because there are more shared data structures
between the helper process and the main process. A simple RPC doing nothing
takes about 16 milliseconds with this new strategy, which is still slow.
After trying the above implementation, I decided to modify the Aegis ker-
nel to further improve performance. I call this implementation IVY II. The

goal was to let the Aegis operating system generate a trace fault to a process

CHAPTER 5. IVY: A PROTOTYPE 153

when a packet arrived so that the simple RPC processing could be done in
the trace fault handler of the main process. In order to do this, the following
modifications were made to the Aegis operating system:

o The data structure of the socket was changed to hold information about

raising trace faults.

¢ A new system call was added to intialize the socket so that the system

will raise a trace fault when a packet arrives in the socket.

¢ The interrupt handler of receiving a packet raised a trace fault if the
socket was marked as raising trace faults.
These modifications eliminated the helper pfocess from the simple RPC mech-
anism.

The implementation in IVY II does not have any heavyweight process con-
text switches and the implementation is rather clean. A simple RPC doing
nothing takes about 10 milliseconds. The performance of the simple RPC mech-
anism is still poor compared with a good RPC implementation [Birrell 83] be-
cause it has many mode switches, implicit context switches, and extra memory
copying. This is the limitation of a user-mode implementation, but the result-
ing system is still adequate to demosstrate the feasibility of a shared virtual

memory.

5.3.2 Protocol Implementation

The protocol of the simple RPC mechanism follows the description given in
Chapter 4 except that the simple RPCs are processed in fault handlers instead
of server processes. In the data structure for implementing the protocol in
IVY, there are two types of channels: outgoing and incoming. An outgoing
channel is associated with a receiving processor and records the information
about the outgoing requests to the processor. Similarly, an incoming channel is
associated with a requesting processor and records the information about the

incoming requests from the processor.

CHAPTER 5. IVY: A PROTOTYPE 154

When a request is sent through an outgoing channel, it gets a transaction
ID (TID) from the channel. Therefore, a request can be uniquely identified
.by its requesting processor number and its TID. An outgoing channel has six
fields:

e current tid—the tid of the last request,

o request pid—the PID of the requesting process,

e request—pointer to the last request packet,

e reply set—the set of the processors that need to send replies,

o acked tid—last acknowledged request tid, and

¢ queue—for the awaiting processes.

The current tid field is used to generate a TID and is incremented by one every
time a new request is sent. When a reply to the last request is received, its
processor number is deleted from the reply set. The request is completed only
when the reply set is empty.

The simple RPC mechanism. only allows one outstanding asynchronous re-
quest for each outgoing channel. This means that each processor allows one
outstanding asynchronous request to the same destination processor, or N out-
standing asynchronous requests to different processors.

An incoming channel has three fields:

e recesved tid—the tid of the last request received,

o reply tid—the tid of the last reply sent out, and

* reply—pointer to the last reply packet.

The incoming channel always keeps its last reply packet because if the reply is
lost, reprocessing the request and generating a new reply would be incorrect
unless no state was changed. The data representation of a reply set is the same
as a copy set so that a broadcast invalidation request can simply copy its copy
set to the reply set field.

All the packet buffers are allocated from a buffer pool by using a straightfor-

ward round-robin algorithm. If the buffer pool runs out of space, then another

CHAPTER 5. IVY: A PROTOTYPE 155

buffer pool is allocated. The initial buffer pool has 128 buffers. In all my
experiments, IVY has not run out of buffers.

IVY uses different channels for broadcast requests and forwarding requests.
It is possible to use the same channels as the normal one-to-one requests, but
the implementation is a little more complicated. Retransmission checking is
done in a null process, which checks all the outgoing channels every half second

when there is nothing to do.

5.4 Shared Virtual Memory Mapping

Although the Apollo MMU hardware supports a page-level protection mecha-
nism, the Aegie operating system does not cffer any system call to et the page
access rights. The only way a user program can change these access rights in
its address space is to map a file (object) into some area with a given access
right. The smallest unit of mapping is segment cf 32 pages (or 32K bytes).

The memory mapping managers in IVY I was implemented based on map-
ping objects and on the user-mode fault handling meckanism provided by the
Aegis operating system. Thus, the size of a memory synchronization unit is a
segment. In order to avoid moving the whole segment across the network for
every page fault, IVY uses a distinct object for each segment. When a proces-
sor has a read fault on a page, the owner processor of the segment containing
the page changes the access rfght to the segment to read-only and the faulting
processor maps the object into the address space. The pages in the segment
will be paged in on demand. Similarly, a write page fault results in mapping in
the associated object with writable access. The pages in the segment are paged
in on demand.

Although the object-memory mapping and the demand paging facility can
prevent the unnecessary movement of a great amount of data, memory con-
tention is a problem when processes in a parallel program modify a lot of shared

data concurrently. The overhead of mapping and unmapping an object is also

CHAPTER 5. IVY: A PROTOTYPE 156

large because the Aegis operating system was not designed for this purpose.
In order to improve the performance, I modified the Aegis kernel te add
system calls that can set access rights directly. The modifications include:
e changing the virtual memory table to maintain the information about the

access right for each page,

e changing all the programs affected by the virtual memory table so that

they will work correctly with the new virtual memory table, and

¢ adding new system calls to set access rights for the pages in user address
spaces.
These modifications were non-trivial.

With the modifications to the Aegis operating system, the IVY II imple-
mentation can use the page size (1K bytes) as its memory synchronization unit
size. Since the data portion of a packet can be as long as 1K bytes and the
header portion can be as long as 512 bytes, the protocol information of the sim-
ple RPC can be put into the header portion and the page can be put into the
data portion. Moving a page usually does not require any additional messages.

The Apollo user address space is divided into two portions. The shared
virtual memory address space is in the high portion and the private memory is
in the low portion. The data structure of the page table is a vector of records
and each record is a table entry. The page table entries are not compacted and
the whole table is stored in the private memory. The page replacement of the
page table relies on the existing virtual memory page replacement mechanism
in the Aegis operating system.

There is no special page replacement algorithm for the shared virtual mem-
ory address space. As discussed in Chapter 4, page replacement between main
memory and disk is unfair. Further improvement of page replacement. was not

implemented in IVY. This optimization should be done in the future.

CHAPTER 5. IVY: A PROTOTYPE 157

5.5 Process Management

The process management module consists of ail the operations for process con-
trol, process migration, and process synchronization. Although some opera-
tions have been through several implementation stages, further improvements

can still be done. See Chapter 4 for more design choices.

5.5.1 Processes and Process Scheduling

All the processes in IVY are lightweight. The program code of a process is
stored in its private memory; therefore, there is no need to build a dynamic
loader. The stack of a process is allocated from the shared memory portion.
Each process has a process control block (FUB) that contains necessary infor-
mation like process state, stack, context, and other process control-dependent
information. The PCBs aie stored in the private memory of the address space.
Therefore, the PID of a process is simply represented as a pair—processor
number and the address of its PCB.

The process state field in a PCB has four attributes: raw, ready, migratible,
and migrated. The raw attribute is set if and only if the PCB is initialized and
ready for a process creation. The ready attribute is set if the process is running
or ready to run. The migratible attribute is set if the process can be migrated
to another processor. Application programs can modify this field by using a
primitive so that a migratible process can become non-migratible or vice versa
at run time. When a process is migrated, a forwarding pointer is put into its
PCB and the migrated attribute is set. The PCBs of migrated processes are
never collected.

At the initialization stage, a fixed number of PCBs are created and ini-
tialized so that process creation requires very little binding work. The dead
PCBs generated by process terminations are not collected until no free PCB is
available for a process creation.)

Since IVY is implemented in user mode, all the lightweight processes are

CHAPTER 5. IVY: A PROTOTYPE 158

implemented in a heavyweight process. Hence, there is no disk I/O overlap
among lightweight processes. Nevertheless, lightweight processes have overlaps
on synchronous simple RPC operations.

The process scheduling mechanism is built to be simple. Each processor
has a local ready queue using a last-in-first-out policy. Processes do not have
priorities; the process dispatcher is invoked only when a process is suspended.
The process dispatcher always picks up the process in the front of the ready
queue. If there is no ready process available, the dispatcher runs a system
process called the null process.

The null process implements the passive load balancing algorithm. It nor-
mally waits on two low level eventcounts, one for timeout and another for new
ready processes. The null process is invoked when either of them is advanced.
When a timeout event occurs, the null process will run the passive load balanc-
ing algorithm (see Chapter 3). The eventcount for new ready processes can be
advanced only when

e a process is migrated to the current processor,

e a remote resume operation is performed, or

¢ a remote notification operation results in waking up a process.

Of course, when a new ready process is available, the null process will suspend
itself. The dispatcher will the do another schedule.

While implementing the process scheduling algorithm, I learned that, for
many application programs, the algorithm will not work well if the number of
ready processes on each processor is used as the only criterion for migrating
precesses. A better way is to use the number of processes (including both ready

and suspended) controlled by an upper bound and a lower bound as a criterion.

5.5.2 Process migration

Only a ready, migratible process can migrate from one processor to another.

Since PCBs are stored in the private memory portion of the address space, a

CHAPTER 5. IVY: A PROTOTYPE 159

process migration must
¢ send the PCB of the process to the destination processor and put it into
a PCB,
e copy the current page of the process’s stack to the destination processor
and transfer the ownership of the page,
o transfer the ownership of all the pages in the upper portion of the stack
to the destination processor, and
e put the PCB in the ready queue on the destination processor.
The reason for moving the current page of the process’s stack is to avoid a page
fault in the process dispatcher (Figure 5.2). If a stack page fault occurs in the
dispatcher, the fault is a system-mode fault which results in saving the current
context to the system stack and then copying to the user stack in crder to pass
control to user mode. Copying to the user stack generates another fault. Since
this is an infinite loop, a fault like this will cause the system stack to run out

and eventually crash the heavyweight process.

upper
portion

current
page

SP —

lower
portion

stack base

Figure 5.2: 4 process stack.

The upper portion of the stack need not move to the destination processor

because its content is meaningless. Ownership transfer is inexpensive because

CHAPTER 5. IVY: A PROTOTYPE 160

it only requires setting the protection bits of the page frames. There is no nesd
to do anything with the lower portion of the stack because the stack can grow
without having further page faults after the current page and the upper portion

of the stack become writable.

5.5.3 Eventcount Implementation

Eventcount [Reed 79| is the process synchronization mechanism in IVY. Event-
counts were implemented in IVY primarily because the Aegis operating system
uses eventcounts as its synchronization mechanism.

There are two levels of eventcounts in the Aegis operating system, one for
system mode and the other for user processes. These mechanisms only work
among the processes within a node. Although it is possible to extend the user
process eventcount to the network-wide case, doing so requires modifications
to the operating system. Therefore, I decided to implement an eventcount
mechanism only for the processes in the shared virtual memory address space.

The first eventcount implementation was based on message passing, as dis-
cussed in Chapter 4. This implementation was designed with IVY I because
moving a page in IVY costs too much. But, since the data structures of event-
counts are stored in the private memory, the implementation was not clean.

The eventcount implementation in IVY II is based on shared virtual mem-
ory. Curiosity about the locality of eventcount operations motivated this imple-
mentation. The atomic cperation is implemented by wiring memory pages and
using test-and-set instructions. It turns out that the shared virtual memory im-
plementation is much cleaner than that based on message-passing; furthermore,
the performance is better when there is more than one process on each proces-
sor because eventcount primitives become local operations when the eventcount
data structure has been paged into the local Pprocessor.

The queue nodes for the eventcount data structure are allocated from the

same page of the eventcount itself unless it runs out of space in the page, in

CHAPTER 5. IVY: A PROTOTYPE _ 161

which case, allocation is done in a new page. The queue node pages for the
same eventcount are linked together. This mechanism increases the locality of
the eventcount data structure. In most cases, no additional paging is needed

for queue node allocation.

5.6 Memory Allocation

IVY has a simple memory allocation module that uses a “first fit” algorithm
with one-level centralized control. The processor that the user directly contacts
will be appointed to the centralized memory manager. The algorithm is almost
exactly the same as that described in Chapter 4. The only memory allocation
optimization in IVY is to allocate each piece of memory to the boundary of a
page.

Both allocate.and free are atomic operations. IVY uses a binary lock on each
processor for memory allocation purposes. At the beginning of each memory
management primitive, a test-and-set operation is performed on the lock. A
failed process will be put into a queue and will be awakened by an unlock
operation on the lock which is done at every end of each primitive.

The two-level memory management was not implemented, though it is ex-

pected to have better performance.

5.7 Programming in IVY Environment

Programmers can use any programming language in the Apollo DOMAIN to
write parallel programs as long as they can interact with the procedure calls
in the Apollo DOMAIN Pascal in which IVY is implemented. Since all the
languages in the Apollo DOMAIN are designed for sequential programming,
the programmer has to program parallel constructs explicitly with the primi-
tives provided by IVY. This section addresses several issues of writing parallel

programs in Pascal.

CHAPTER 5. IVY: A PROTOTYPE 162

Shared Data Structures

The Apollo DOMAIN Pascal compiler implements all the common language
features with some extensions to serve system programming. Since Pascal is
a strongly typed language, the programmer has to declare the data types of
shared data structures in order to put data into the shared virtual memory.
To make the programming task easier, IVY uses the WITH statement to treat
the data structures in the shared virtual memory syntactically as normal data
structures. For example, a program has two shared data structures foo and
bar. The programming convention in IVY requires the grouping of all shared

data structures into one record:

TYPE
fooType = ARRAY[1..1024] OF CHAR;
barType = Integer;
sharedType = RECORD
foo: fooType:
bar: barType;
END;

sharedPointer = “sharedType;

In the main program, there is a variable sharedDataPointer defined to be the
pointer to the shared record, so that every processor can simply share all the
data structures by using the shared record pointer. The main program of the

parallel program allocates a piece of memory for the shared data structure:

VAR sharedDataPointer: sharedPointer;

Allocate(sharedDataPointer, Sizeof(sharedDataPointer~));

To use the shared data structures, a procedure uses WITH to enclose the piece
of program:
PROCEDURE baz;

CHAPTER 5. IVY: A PROTOTYPE 163

BEGIN

WITH sharedDataPointer™ DO BEGIN

x := fool 10 J;

END;
END;
Note that the program references the shared data structure foo exactly as it

does a normal variable.

Parallel Constructs

Parallel constructs are created by using the primitives provided by the process
management module. The programmer chooses how to schedule processes when
calling an initialization procedure at the beginning of her program. There are
two options: manual scheduling and system scheduling. If system scheduling
is used, the programmer only needs to create and terminate processes. But
if manual scheduling is chosen, the programmer needs to take care of process
migration as well. -

It is the programmer’s responsibility to program process synchronization.
The methodology of such programming is the same as that of “conventional”
concurrent programming developed since the 1960s. ‘L'he programmer only
needs to keep in mind that she is writing a concurrent program that runs
on a traditional operating system on a uniprocessor. Although there is no
parallel programming language, such a primitive environxﬁent has proven to be

convenient enough to write benchmark programs.

CHAPTER 5. IVY: A PROTOTYPE 164

Debugging

IVY does not have any special debugging tools. Debugging programs is usually
done on a single processor. Since an IVY image file can run on any number of
processors, there is no need to have a simulator. My experience with IVY shows
that if a program follows IVY parallel programming conventions, debugging on
a single processor is usually successful. After debugging on a single processor,
the programmer should debug her program on two and then three Processors.

My experience indicates that if a program can run on three processors correctly,
there are few bugs left.

5.8 Experience

As mentioned early in this chapter, the algorithms in the implementation of
IVY are not complicated. In fact, there are only 4669 lines of code; most of the
programs are written in Pascal and a few of them are written in assembly code.
This number includes the code for implementing different memory coherence
algorithms and debugging options. It does not include the modifications to the
Aegis operating system. However, the task of making the system work correctly
is far more subtle than it may appear.

While debugging, I usually used two examples: consumer-producer and par-
allel Jacobi algorithm. Even for the consumer-producer example, I encountered
bugs that appeared only when running the system on more than two processors.
When I inserted some statements to print out related states or save those states
to print out later, the bugs disappeared because the timing of communications
and interrupts were different. Since MIMD multiprocessors are asynchronous,
there were also bugs that were not always reproducible. Lacking information
and tools, the only way to deal with these kind of bugs is to think.

The main complexity in debugging such a system is that one needs to con-

sider possibilities in a multiple dimensional space. Humans are trained to think

CHAPTER 5. IVY: A PROTOTYPE 165

sequentially; this is especially true for those of us who have written sequential
programs for many years. A methodology for parallel program engineering and

debugging tools for parallel programs are highly desirable.

5.9 Remarks

My experience implementing IVY shows that, althoﬁgh it is possible to imple-
ment a shared virtual memory without modifying an existing system like the
Aegis operating system, it is necessary to modify the existing system to get ac-
ceptable performance. While the performance of IVY II is acceptable, there is
much room for improvement. The implementation has shown that a user-mode
implementation has a lot of overhead and that a system-mode implementation
ought to provide a substantial improvement. A well-tuned system-mode imple-
mentation should improve the performance of the simple RPC and page moving
by a factor of at least two according to the performance comparison with some
well tuned system like the V kernel [Cheriton 84, Zwaenepoel 85]. I/O overlaps
among the lightweight processes do not exist in IVY. An integrated heavyweight
and lightweight process scheduler is highly desirable. The disk I/O overlap may
also greatly improve IVY’s performance. The page replacements for both page
tables and the shared virtual memory space are not fair. To achieve a fair page

replacement, one needs to implement the algorithm mentioned in Chapter 4.

Chapter 6

Experiments

As stated at the beginning of this disertation, my thesis is: Shared virtual
memory on a loosely coupled multiprocessor can achieve orders-of-magnitude
speedups over a uniprocessor for many parallel programs, and it is practical to
implement on existing architectures. A reasonable way to justify the thesis and
to compare some design choices is to run parallel programs on the prototype
shared virtual memory system described in the previous chapter. In this chap-
ter, I present three kinds of statistical data for the experiments performed on
the prototype: speedups, memory coherence algorithm comparison, and shared
virtual memory reference miss ratio. The experimental results strongly support

my thesis.

6.1 Applications

Given the difficulties of finding practical parallel programs, the only reasonable
way to do experiments is to select a set of application programs from different
fields as a benchmark suite. In choosing benchmark programs, I used the

following two features as criteria:

o Reasonably fine granularity of parallelism.

166

CHAPTER 6. EXPERIMENTS 167

Parallel programs with rather coarse granularity can obviously perform

well in the shared virtual memory system.

o Side-effects in shared data structures.

There are parallel functional programs that do not have any side-effects in
their data structures at run time[Hudak 86a]. The shared virtual memory
system is clearly a big win in these applications, so I did not choose them
as benchmarks.
The main goal in using these criteria is to avoid weighing the experiments in
favor of the shared virtual memory system by picking problems that suit the
system well. A better test is to select problems that do not suit the system
well.
The benchmark set in the experiments consists of six parallel programs that
are written in Pascal. All of them are transformed manually from sequential

algorithms into parallel ones in a straightforward way.

Linear Equation Solver

This is a parallel Jacobi algorithm for solving linear equations. The algorithm
is transformed from the traditional, sequential Jacobi algorithm that solves the
linear equation Az = b where 4 is an n by »n matrix. In each iteration, z{¥*+1)

is obtained by

i—1 n
99— (b= Sl = 3 o).

J=1 J=i+1
The parallel algorithm creates a number of processes to partition the prob-
lem by the number of rows of matrix A. All the processes are synchronized
at each iteration by using an eventcount. The data structures 4, z, and b are
stored linearly in the shared virtual memory, and the processes access them
freely without regard to their location. Such a program is much simpler than

that which results from the usual message-passing style program, because the

CHAPTER 6. EXPERIMENTS 168

programmer does not have to perform data movement explicitly at each itera-

tion.

3D PDE Solver

This is a parallel Jacobi algorithm for solving three dimensional partial differ-
ential equations (PDEs). The algorithm and its transformation are the same
as the linear equation solver except that in the equation Az = b, A is a special
sparse matrix “coded into the program” rather than stored in the shared vir-
tual memory. The vectors z and b are stored in the shared virtual memory, and
the processes access them freely without regard to their location. Since matrix
A does not need space in the shared virtual memory, the program executes

differently from the linear equation solver.

Sorting

The parallel sorting algorithm implements block split-merge sort; more specifi-
cally, a variation of the block odd-even based merge-split algorithm described in
[Bitton 84]. The sorted data is a vector of records that contain random strings.

At the beginning, the program divides the vector into 2N blocks for N
processors, and creates IV processes, one for each processor. Each process sorts
two blocks by using a quicksort algorithm [Hoare 62]. This internal sorting is
naturally done in parallel. Each process then does an odd-even block merge-
split sort 2IV — 1 times. The vector is stored in the shared virtual memory, and
the spawned processes access it freely. Because the data movement is implicit,

the parallel transformation is straightforward.

Dot-product

The dot-product program computes

S = Z Tils.
i=1

CHAPTER 6. EXPERIMENTS V | 169

A number of processes are created to partition the problem. Process i computes

a sum
U
Si =3 zy;-
2

S is obtained by suming up the sums produced by the individual processes:

where m is the number of processes. Both vector z and y are stored in the shared
virtual memory in a random manner, under the assumption that z and y are not
fully distributed before doing the computation. The main reason for choosing
this example is to show the weak side of the shared virtual memory system;

dot-product does little computation but requires a lot of data movement.

Traveling Salesman Problem

The traveling salesman problem is to find a tour that visits each city once with
the minimum cost. The cities are represented as the nodes in an undirected
graph. Each edge in the graph is assigned a random weight. The cost of a tour
is the sum of the weights of the edges on the tour.

The program is a parallel branch-and-bound algorithm that finds a tour
with the minimum cost. The branch-and-bound strategy used in the program
is a simplified version of the one proposed by Heid and Karp [Heid 70]. At each
step, an l-tree (a variation of the minimum spanning tree) of the remaining
graph is computed. The sum of the cost of the subtour and the 1-tree is
compared with the cost of the current least upper bound. If the cost is less
than the upper bound, it will replace the upper bound and the subtour is still
valid; otherwise, the subtour will be thrown away. The available branches, the
graph, and the least upper bound are stored in the shared virtual memory.
The program creates a process for each processor that performs the branch-
and-bound algorithm on a branch obtained from the shared virtual memory.

All the processes run in parallel until the tour is found. Such a program is easy

CHAPTER 6. EXPERIMENTS 170

to write because the spawned processes do not require explicit data movement

among processors.

Matrix Multiply

The matrix multiply computes C = AB where A, B and C are square matrices.
A number of processes are created to partition the problem by the number
of columns of matrix B. All the matrices are stored in the shared virtual
memory. The program assumes that matrix A and B are on one processor at
the beginning and they will be paged to other processors on demand. This

program has a lot of computation and little data movement.

6.2 Speedups

The speedup of a prograin is the ratio of the execution time of the program on
a single processor to that on the shared virtual memory system. The execution
time of a program is the elapsed time from program start to program end, which
is measured by the clock in the system. The execution time does not include
the time of initializing data structures in the program because the initialization
has little to do with the algorithm itself. For instance, the initialization of the
merge-split sort program initializes an unsorted vector of records with random
strings in their key fields. The time spent on the initialization depends on the
generation of random strings; a complicated random string generating algo-
rithm can well consume a lot of time. Indeed, if this initialization is included
in the execution time of the program, and such an initialization is performed
in parallel, it is possible to get a better speedup than the ideal speedup, since
ideally this parallel algorithm does not yield a linear speedup.

In order to obtain a fair speedup measurement, all the programs in the
experiments partition their problems by creating a certain number of processes

according to the number of processors used. As a result of such a parameterized

CHAPTER 6. EXPERIMENTS i71

partitioning, any program does its best for any given number of processox.'s. To
help observe the system performance of the prototype shared virtual memory
system, all the speedup curves are compared against the ideal speedups on a
single processor with the same parallel algorithm.

Figure 6.1 shows the speedup curve for the parallel Jacobi algorithm solving
a linear equation Az = b where A is a 262 by 262 matrix. The dashed line in the
figure is the linear speedup curve. The parallel 3-D PDE solver has an almost
identical result (Figure 6.2) in which matrix 4 is 50° by 50°. The dashed line in
the figure is also the linear speedup curve. Note that both programs experience

super-linear speedup.

0 " i 2 1 " 1 " |
0 2 4 L} 8

Number of processors

Figure 6.1: Speedups of solving a linear equation

At first glance, these results seem impossible because the fundamental law
of parallel computation says that a parallel solution utilizing p processors can
improve the best sequential solution by at most a factor of p. Something must

be interacting in either the programs or the shared virtual memory implementa-

CHAPTER 6. EXPERIMENTS 172

0 " ! n | N ! " 1
[} 2 4 8 8

Number of processors

Figure 6.2: Speedugps of a 3-D PDE where n = 50

tion. Since the algorithm in both programs is a straightforward transformation
from the sequential Jacobi algorithm and all the processes are synchronized
at each iteration, the algorithm cannot yield super-linear speedup. So, the
speedup must be in the shared virtual memory implementation.

The shared virtual memory system can provide super-linear speedups be-
cause the fundamental law of parallel computation assumes that every processor
has an infinitely large memory, which is not true in practice. For instance, in
the parallel 3-D PDE example above, the data structure for the problem is
greater than the size of physical memory on a single processor, so when the
program is ruu on one processor there is a large amount of paging between the
physical memory and disk.

Figure 6.3 shows the disk paging in the one processor case and the two
processor case. The solid line in the fizure shows the number of disk I/O pages

when the program runs on one processor. The dashed line and dotted line shows

CHAPTER 6. EXPERIMENTS 173

2000 ~

1500

Disk 1/0 pages

500

Number of iterations

Figure 6.3: Disk paging on one processor and two processors

the numbers of disk I/O pages when the program runs on two processors. The
two curves are so different because the program initializes its data structures
only on one processor. The dashed line indicates the number of disk I/O pages
on the processor with initialized data (processor 1) and the dotted line (which
can hardly be seen) indicates that on the processor without initialized data
(processor 2). Since the virtual memory paging in the Aegis opcrating system
performs an approximated LRU strategy and the pages that moved to processor
2 are recently used on processor 1, processor 1 had to page out some pages
that it needs later, causing more disk I/O page movement. This also explains
why the number of disk I/O pages on processor decreases after the first few
iterations.

The shared virtual memory, on the other hand, distributes the data struc-
ture into individua!l physical memories whose cumulative size is large enough to

inhibit disk paging. It is clear from this example alone that the shared virtual

CHAPTER 6. EXPERIMENTS 174

memory can indeed exploit the combined physical memories of a multiprocessor

system.

" | n 1
o 2 4 8 8

Number of processors

Figure 6.4: Speedups of a 3-D PDE where n = 40

Figure 6.4 shows another speedup curve for the 3-D PDE program, but now
n = 40, in which case the data structure of the problem is not larger than the
physical memory on a processor. This curve is what we see in most parallel
computation papers. The curve is similar to that generated by similar experi-
ments on CM¥, a pioneer shared memory multiprocessor [Fuller 78, Jones 80,
Deminet 82]. Indeed, the shared virtual memory system is as good as the best
curve in the published experiments on CM* for the same program; but the
efforts and costs of the two approaches are dramatically different. In fact, the
best curve in CM* was obtained by keeping the private program code and stack
in the local memory on each processor. The main reason that the performance
of this program is so good in the shared virtual memory system is that the

program exhibits a high degree of locality. While the shared virtual memory

CHAPTER 6. EXPERIMENTS 175

system pays the cost of local memory references, CM* pays the cost of remote

memory references aross its Kmaps.

0 " 1 L L N L s J
0 € 4 8 8

Number of processors

Figure 6.5: Speedup of merge-split sort

Parallel sorting on a loosely coupled multiprocessor is generally -difﬁcult.
The speedup curve of the parallel merge-split sort of 200K elements shcwn in
Figure 6.5 is not very good. In theory, even with no communication costs, this
algorithm does not yield linear speedup. In order to give a fair comparison, the
dashed line in the figure shows the speedup curve when the costs of all memory
references are the same. Recall that the program uses the best strategy for any
given number of processors. For example, there is one merge-split sorting when
running the program on one processor, there are 4 blocks when running the
program on two processors, and so on. Using a fixed number of blocks for any
number of processors would result in a better speedup, but such an approach
is not reasonable.

Figure 6.6 shows the speedup curve of the parallel dot-product program in

CHAPTER 6. EXPERIMENTS 176

Number of processors

Figure 6.6: Speedup of dot-product

which each vector has 128K elements. It is included here so as not to paint too
bright a picture. To be fair, the program assumes that the two vectors have
a random distribution on each processor. Even with such an assumption, the
speedup curve is not good, as indicated by the solid line in Figure 6.6. If the two
vectors are located on one processor, there is no speedup at all, as indicated by
the dotted curve in Figure 6.6, because the ratio of the communication cost to
the computation cost in this program is large. For programs like dot-product,
it is not appropriate to use a shared virtual memory system.

Figure 6.7 shows the speedup curve of the matrix multiplication program
for C = AB where both A and B are 128 by 128 square matrices. This
example shows the good side of the shared virtual memory system. The speedup
curve is close to linear because the program exhibits a high degree of localized
computation.

The speedup curve of the travelling salesman problem is shown in Figure 6.8.

CHAPTER 6. EXPERIMENTS 177

1 . 1 2 J
0 2 4] 8

Number of processors

0 " 1

Figure 6.7: Speedup of matrix multiplication

Since the algorithm is a parallel branch-and-bound, there are anomalies [Lai 84].
It is possible that the program gets super-linear speedup or no speedup at all.
In this example, it happens to have super-linear speedup. The reason it has
super-linear speedup is that the program can gzt a smaller upper bound earlier
than the sequential branch-and-bound program, so some branches are cut off in
the parallel program while they are not cut off in the sequential one. Whether
the program gets a better speedup also depends on the weights assigned to the
edges. One can imagine an extreme case in which all the weights are similar.
Such a case has all tours with similar costs. A sequential branch-and-bound
should take exponential time to find the best tour whereas a parallel branch-
and-bound should have a speedup close to linear. In this example, the weights
are obtained by generating random numbers in the range [10,1000].

In general, the experimental results show that a shared virtual memory

implementation is indeed practical, even on a very loosely coupled architecture

CHAPTER 6. EXPERIMENTS

Speedup
T

! N " 1
8

Number of processors

Figure 6.8: Speedup of traveling salesman problem

such as the Apollo ring.

178

CHAPTER 6. EXPERIMENTS 179

6.3 Memory coherence algorithms

The most natural way to evaluate memory coherence algorithms is by com-
paring their system performance. In other words, algorithm a, is better than
algorithm ay if the system based on a, can finish parallel programs faster than

the one based on a,.

o -3 ~
o o o
T T T

Average time per iteration
3
T

10 |-

0 s ! 2 1 s 1 : |

Number of processors

Figure 6.9: Performance with different algorithms

Figure 6.9 shows the average time per iteration of the 3-D PDE program
running on up to eight processors using three different algorithms: the dynamic
distributed manager algorithm (solid curve), the improved centralized manager
algorithm (dotted curve), and the fixed distributed manager algorithm (dashed
curve). The dynamic distributed manager algorithm performs better than the
other two.

Although using system performance to compare memory coherence algo-

rithms is a good approach, the differences between algorithms are not explicit

CHAPTER 6. EXPERIMENTS ; 180

when a parallel program does not have a lot of page faults. An alternative
approach is to measure the total number of messages used in an algorithm.
For example, the number of forwarding requests can be used as a criteria for
comparing algorithms. In order to do so, each processor at run time records
the statistical information into a file. The information includes the number of
read page faults, the number of write page faults, process migration inform:_s.-
tion, memory page distribution information, and simple RPC information. The
information about disk paging and network traffic is obtained from the Aegis

operating system.

2000 —

...

3

o
T

Number of requests
g
T

forward
requests

o 1 A) " -l "]
o 2 4 L] 8

Number of processors

Figure 6.10: Improved centralized manager algorithm

Figures 6.10, 6.11 and 6.12 show the number of forwarding requests for
locating true pages during the first six iterations of the 3D PDE program using
the improved centralized manager algorithm, the fixed distributed manager
algorithm, and the dynamic distributed manager algorithm, respectively.

In the fixed distributed manager algorithm, the manager mapping function

CHAPTER 6. EXPERIMENTS 181

g

Number of requests
g
T

forward
requests

]

0 | L 1 " Il " 1
[} 2 4 [} 8

Number of processors

Figure 6.11: Fixed distributed manager algorithm

is
H(p) =pmod N

where p is a page number and N is the number of processors. The curve of
the forwarding requests of the fixed distributed manager algorithm is similar to
that of the improved centralized manager algorithm because both algorithms
need a forwarding request to locate the owner of the page for almost every
page fault that occured on a non-manager processor. Since the workload of the
fixed distributed manager algorithm is a little better than that of the improved
centralized manager algorithm, the performance of the former is a little better
than the latter as the number of processors increases.

The figures show that the overhead of the dynamic distributed manager
algorithm is much less than that of the other two algorithms. This confirms the
theoretical result that the dynamic distributed manager algorithm outperforms

the other two because the prob_owner fields usually give correct hints (thus the

CHAPTER 6. EXPERIMENTS ' 182

2000

g
(-]
T

Number of requests
g
—

Number of processors

Figure 6.12: Dynamic distributed manager algorithm

number of forward requests is very small), and within a short period of time

the number of processors sharing a page is small.

6.4 Miss Ratios

The memory reference miss ratio of a program execution in a shared virtual
memory system is the ratio of the number of the shared virtual memory ref-
erences that cause page faults to the number of the shared virtual memory
references that do not cause page faults. Normally, miss ratios are measured
by trace driven simulations [Smith 82, Smith 85]. For a shared virtual memory
system, memory reference traces are difficult to get because recording memory
reference traces will change the timing of the parallel execution of a program
which results in changing the miss ratio itself. The miss ratios obtained here

are calculated by counting the number of shared virtual memory references and

CHAPTER 6. EXPERIMENTS © 183

the total page faults for each execution of a program. Counting the number
of shared virtual memory references is done by reading the assembly code of
each program. Note that disk page faults are not included because they are
architecture-dependent.

The miss ratio of a program not only reflects the system performance of a
shared virtual memory system, but also indicates the granularity of parallelism
in the program. In order to compare the localities of different benchmark
programs, the miss ratios of the 3D PDE program, the sort program, and
the matrix multiply program are put into one figure in which the miss ratio
dimension is from 0 tc 0.001. If the miss ratio of a program is 0.001, it means
that, on average, the locality of the program can at least guarantee that there
‘are as many as 1000 memory references per page fault, or that each word in

the page is referenced 4 times.

0.0010 ~

0.0008 |-

Miss ratio
o
[=]
8
(-]
T

o
o
8
&
T

0.0002 |~

0.0000 L " 1 " 1 "]

Number of processors

Figure 6.13: Miss ratios

In Figure 6.13, the solid line shows the miss ratio of the first six iterations

CHAPTER 6. EXPERIMENTS 184

of the 3D PDE program in which the matrix is 50 by 50%. The miss ratio
curve is a function of the number of processors. The miss ratio is obtained
by counting the number of memory references and the number of page faults
during each iteration. The miss ratio curve goes up as the number of processors
increases. The low miss ratio indicates that the program has fairly coarse grain -
parallelism and has locaitty in the shared virtual memory environment.

The dashed line in Figure 6.13 shows the miss ratio of the merge-split sorting
program. At the internal sorting stage, the program obviously has a high degree
of locality and at the merge-split stage, one of the two merging blocks is always
local.

The dotted line in Figure 6.13 shows the miss ratio of the matrix multiply
program. The miss ratio is very low because two matrices are read only and
they are only paged in at the beginning of the execution. Apparently, the
program has a high degree of locality.

0.00000010

0.00000008 |-
0.00000006
0.00000004

o.00m00002 /

0.00000000 L L s L L
. 2 4 8 8
Number of processors

MI1SS rario

Figure 6.14: Miss ratio f a linear equation solver

CHAPTER 6. EXPERIMENTS 185

Figure 6.14 shows the average miss ratio of the first eight iterations of the
linear equation solver in which the matrix A is 26® by 263. Since it is stored in
the shared virtual memory (unlike the 3D PDE program in which the matrix
is coded in program), there are more shared virtual memory references than
those in the 3D PDE program. The miss ratio is so low that the figure has to
use the limits that are 1/10000 of the one in Figure 6.13.

The miss ratio of the dot-product program is not interesting because the
two vectors in the program are only referenced once. The miss ratio of the
traveling salesman problem is difficult to obtain because the number of shared

virtual memory references is not fixed.

CHAPTER 6. EXPERIMENTS 186

6.5 Remarks

The experimental results shown in this chapter strongly support the idea of
the shared virtual memory on loosely coupled multiprocessors. Although the
experiments were run on a not well-tuned system implemented on a very loosely
coupled multiprocessor, it is possible to get super-linear speedups without even
paying special ha.rdware. cost.

Given the time and the implementation environment, the next experiments
I would like to run would measure the performance on more than eight proces-
sors. Although building a shared virtual memory system on more than eight
processors is perhaps not very important for a very loosely coupled multipro-
cessor system like a network of workstations, the experimental results would
show the limits of a shared virtual memory system.

Next, I would like to run experiments comparing the different scheduling
strategies described in Chapter 3 and the page replacement algorithms de-
scribed in Chapter 4. Furthermore, I would like to run experiments to compare
different page sizes in a shared virtual memory system. Although these exper-
iments are not crucial to my thesis, they will fully justify other ideas proposed

in the dissertation.

Chapter 7

Final Thoughts

I have presented strong evidence in support of my thesis that shared virtual
memory on a loosely coupled niultiprocessors can achieve orders-of-magnitude
speedups over a uniprocessor for many parallel programs, and that it is prac-
tical to implement on existing architectures: But this dissertation only begins
the research in building the shared virtual memory. Many research problems

remain. This chapter addresses some of them.

7.1 Generality

The prototype shared virtual memory has demonstrated that the idea of shared
virtual memory is practical for loosely coupled multiprocessors. A natural ques-
tion is whether the concept can be applied to tightly coupled multiprocessors
or a network of tightly coupled multiprocessors.

For a tightly coupled multiprocessor based on an interconnection network, a
shared virtual memory implementation may still prove both feasible and desir-
able. For example, in tightly coupled multiprocessors such as CM*, Butterfly,
and RP3 [Jones 80, Larus 84, Pfister 85, the cost of a remote memory reference
is more expensive than a local memory reference although any processo: can

reference any memory location. A straightforward implementation of virtual

187

CHAPTER 7. FINAL THOUGHTS 188

memory on a multiproc.essor of this kind would result in losing the localities
of parallel programs that the shared virtual memory system can offer. This
is exactly why the experiment of the 3D PDE program on IVY has a similar
curve to that of the best curve in the experiment on CM*,

To implement a shared virtual 1aemery on a tightly coupled multiprocessbr,
one may want to make the page size very small and have special hardware do
paging to solve the memory coherence problem. So far, for N memory units, all
the practical interconnection networks have a log N delay for a remote memory
reference. This delay is a big concern if one wants to build a multiprocessor
with a massive number of processors [Snyder 86]. Since the shared virtual
memory system offers localities for many paralle] programs, the average delay
of a memory reference may be reduced by a large factor.

The techniques of the shared virtual memory system proposed in this thesis
can probably apply directly to a network of tightly coupled multiprocessors.
For example, a multiprocessor workstation such as a Firefly provides a true
shared memory and solves the memory coherence problem through the use of
snoopy caches [Thacker 86]. When Fireflies are connected by a communication
link, it would be possible to use the design methods proposed in this thesis
to build a shared virtual x.nemory among a number of Fireflies. Such a shared
virtual memory implementation would allcw a parallel program to run on more
than one multiprocessor while there is still a shared memory spac:. Process
scheduling woulid play an important role in the system because a program can
run faster if the processes that are closely related to each other run on the same
multiprocessor workstation.

The idea of building a shared virtual memory on a network of multiproces-
sors suggests a radically different viewpoint of parallel architectures in which
one can build a shared memory based massively parallel architecture by using
loosely coupled links and software instead of using high cost interconnection

networks.

CHAPTER 7. FINAL THOUGHTS 189

7.2 Parallel Programming Language

In the prototype shared virtual memory system IVY, there is no parallel pro-
gramming language implementation. For this reason, the programmer needs to
manually write parallel constructs. She must allocate memory for shared data
structures and create processes by using the primitives provided by the system.
A parallel programming language would make the ;irogra.mming environment
much more convenient.

In order to see whether a shared virtual memory system can be used as the
base from which one implements parallel programming languages, let us briefly
examine the implementation of several recently proposed parallel programming
languages.

Linda is a parallel programming language in which a small set of primitives
are used to access a global tuple space [Gelernter 85]. Implementing the global
tuple space on top of a shared virtual memory system would greatly simplify
the implementation designs. Indeed, it would be sufficient to implement only
atomic local primitives since the shared virtual memory solves the memory
coherence problem. If tuples are carefully allocated in the global tuple space,
éven the first use of a read operation may not require any data movement
because other operations used before may have paged in its data. I would
expect that the system performance of such an implementation would be better
than a straightforward implementation.

Multilisp is an extension of Lisp (more specifically, the Lisp dialect Scheme)
with additional operators and additional semantics to deal with parallel exe-
cution [Halstead Jr 85]. The shared virtual memory perfectly fits the langauge
design because Multilisp assumes a shared memory and all the processes created
by pecall and future share the same address space. Multilisp has been imple-
mented on Concert [Anderson 82, Halstead Jr 84|, a multiprocessor that has a
physical shared memory. If one wants to implement a Multilisp on a loosely

coupled multiprocessor, the shared virtual memory would present an environ-

CHAPTER 7. FINAL THOUGHTS 190

ment just as convenient as any tightly coupled multiprocessors with physical
shared memories. Whether it is possible to gain enough parallelism for most
parallel programs is an open question.

ParAlfl is a parallel functional language augmented with features that al-
low programs to be mapped to specific multiprocessor topologies [Hudak 85].
Again, ParAlfl assumes a shared memory among processors. The shared virtual
memory fits this langauge extremely well because programs in this langauge do
not have side-effects which are the causes of memory coutention. I would expect
that such a language would show the best side of the shared virtual memory sys-
tem. Furthermore, implementing a mechanism to map functions automatically
onto multiprocessors would be much simpler than using any existing message
passing means because the shared virtual memory provides the compiler with
a single address space so that passing data structures is no longer necessary.

From all the implementation issues I can see, the shared virtual memory
seems to fit parallel programming languages well in both performance and the

effort needed to implement them.

7.3 ~Granularity

The page size in the prototype shared virtual memory implementation IVY is
1024 bytes. Experiments have shown that such a granularity is suitable for a
large class of parallel programs. The informal analysis in Chapter 2 indicates
that the page size in the shared virtual memory system should be as small as
the MMU allows in existing systems. If one designs an architecture, one needs
to decide, given a communication architecture and a transmission rate, what
the optimal page size is for a shared virtual memory system.

This problem must be addressed in both theory and practice. So far, no
one has practical experience with different page sizes. Since the shared virtual
memory system is on multiprocessors, it might be difficult to simulate. A

plausible way to collect empirical data is to use a system whose page size is as

CHAPTER 7. FINAL THOUGHTS 191

small as or smaller than 256 bytes. With some work, the shared virtual memory
implementation could parameterize its page size to be an integral multiple of
the original page size. This kind of implementation could serve the experiments
with different page sizes.

Recent studies of page sizes for diskless workstations show that moderate
page sizes (8-16K bytes) are better than small ones [Lazoweska 84]. The best
page size for disk paging may not match the best page size for shared virtual
memory. In order to optimize both, architecture designers may need to consider
using different page sizes for disk paging and shared virtual memory.

7.4 Reliability

Throughout the thesis, I have not addressed the reliability issue. Although the
simple RPC protocol proposed in Chapter 4 allows processors to lose packets,
it does not allow the shared virtual memory. system to have faulty or fail-stop
(or crash only) processors during its execution. This restriction is not a big
problem for reproducible applicztions such as scientific computing problems
because one can always recreate a fresh shared virtual memory system and
redo the computation. It would be a problem for applications that are not
reproducible.

The faulty processor problem is a form of the Byzantine Generals Problem
[Pease 80]. It is not clear whether it is possible to apply the theoretical results
of the problem to the shared virtual memory system. The fail-stop recovery

problem is simpler but it requires a lot of work.

7.5 Other Applications

I have only tested a small set of parallel programs, which raises the question of
whether the shared virtual memory system is good for other applications or not.

The parallel programs in the benchmark set have a fairly fine granularity of par-

CHAPTER 7. FINAL THOUGHTS 192

allelism. They all have side-effects to their shared data structures at run time.
Parallel application programs with similar parallel granularities and similar ra-
tios of the cost of communication to the cost of computation should perform
as well as the benchmark programs if they run on a shared virtual memory
system with the system performance similar to or better than that in the pro-
totype system. Clearly, the parallel applications that have fewer side-effects to
their shared data structures and have coarser granularity of parallelism would
perform better.

If the fail-stop recovery problem can be solved, some distributed computing
applications might be well suited to the shared virtual memory system. An
interesting ¢Xample is a distributed database system. One can imagine that
many things in implementing such a system would be greatly simplified because
the data consistency problem would be well taken care of by the shared virtual
memory system. Furthermore, some expensive database operations such as
Join could be parallelized because the shared virtual memory system supports

parallel computation.

Bibliography

[Aho 74]

[Anderson 82]

[Annaratone 86]

{Apollo 81]

[Archibald 85]

[Baker 78]

A.V. Aho, J.E. Hopcroft, and J.D. Ullman.
The Design and Analysis of Computer Algorithms.
Addison-Wesley Publishing Company, 1974.

Thomas L. Anderson.

The Design of A Multiprocessor Development System.
Technical Report MIT/LCS/TR-279, Massachusetts Insti-
tute of Technology, September 1982.

M. Annaratone, E. Arnould, T. Gross, H.T. Kung, M.S. Lam,
O. Menzilcioglu, K. Sarocky, and J.A. Webb.

Warp Architecture and Implementation.

In Proceedings of the 18th Annual Symposium on Computer
Architecture, pages 346-356, 1986.

Apollo.
Apollo DOMAIN Architecture.
Apollo Computer Inc., Chelmsford, Mass., 1981.

J. Archibald and J. Baer.

An Evaluation of Cache Coherence Solutions in Shared-bus
Multsprocessors.

Technical Report 85-10-05, University of Washington, Octo-
ber 1985.

Henry G. Baker.

Actor Systems for Real-time Computation.
PhD thesis, M.I.T., March 1978.
Technical Report TR-197.

193

BIBLIOGRAPHY 194

[Barnes 68|

[Belady 66]

[Birrell 83]

[Birrell 84]

[Bitton 84]

[Bobrow 72]

[Bokhari 79]

[Carr 81]

[Carriero 86a]

G.H. Barnes, R.M. Brown, M. Kato, D.J. Kuck, D.L. Slot-
nick, and R.A. Stokes.

The ILLIAC IV Computer.

IEEE Transactions on Computers, C-17:746-757, Augusi
1968.

L.A. Belady. .

A Study of Replacement Algorithms for Virtual Storage
Computers.

IBM Systems Journal, 5(2):78-101, 1966.

A.D. Birrell and B.J. Nelson.
Implementing Remote Procedure Calls.
Technical Report CSL-83-7, Xerox PARC, December 1983.

Andrew D. Birrell.
Private communications, 1984.

D. Bitton, D.J. DeWitt, D.K. Hsaio, and J. Menon.
A Taxonomy of Parallel Sorting.
ACM Computing Surveys, 16(3):287-318, September 1984.

D.G. Bobrow, J.D. Burchfiel, D.L. Murphy, and R.S. Tom-
linson.

TENEX, a paged time-shaing system for the PDP-10.
Commaunications of the ACM, 15(3):135-143, March 1972.

S.H. Bokhari.

Dual Processor Scheduling with Dynamic Reassignment.
IEEE Transactions on Software Engineering, SE-5(4), Octo-
ber 1979.

R.W. Carr and J.L. Hennessy.

WSClock — A Simple and Efficient Algorithm for Virtual
Memory Management.

In Proceedings of the Eighth Symposium on Operating Sys-
tems Principles, December 1981.

N. Carriero and D. Gelernter.
The S/Net’s Linda Kernzl.

BIBLIOGRAPHY 195

[Carriero 86b)

[Censier 78]

[Cheriton 84]

[Cheriton 86]

[Coffman Jr. 72]

[Coffman, Jr. 73]

[Conway 63|

[Corbato 62]

ACM Trarsactions on Computer Systems, 4(2):110-129,
May 1986.

Nicholas Carriero.
Private communications, 1986.

L.M. Censier and P. Feautrier.

A New Solution to Coherence Problems in Multicache Sys-
tems.

IEEE Transactions on Computers, C-27(12):1112-1118, De-
cember 1978.

David R. Cheriton.
The V kernel: A Software Base for Distributed Systems.
IEEE Software, 1(2):19-43, 1984.

D.R. Cheriton and M. Stumm.

The Multi-Satellite Star: Structuring Parallel Computations
for A Workstation Cluster.

Presentation at Yale by M. Stumm, 1986.

E.G. Coffman Jr. and R.L. Grahan.
Optimal Scheduling For Two-processor systems.
Acta Informatica, 1(3):200-213, 1972.

E.G. Coffman, Jr. and P.J. Denning.
Operating Systems Theory.
Prentice-hall, Inc., Englewood Cliffs, New Jersey, 1973.

M.E. Conway.
A Multiprocessor System Design.
In Proceedings of Fall

Joint Computer Conference, pages 139-146, AFIPS Press,
1963.

F.J. Corbato and et al.

An Experimental Time Sharing System.

In Proceedings of Spring Joint Computer Conference,
pages 335-344, AFIPS Press, 1962.

BIBLIOGRAPHY 196

[Daley 68]

[Deminet 82]

[Denning 68]

[Denning 70]

[Denning 72]

[Denning 80]

[Dennis 66]

[Dijkstra 68]

(Easton 76]

R.C. Daley and J.B. Dennis.
Virtual Memory, Processes, and Sharing in MULTICS.
Commaunications of the ACM, 11(5):306-312, May 1968.

Jarek Deminet.
Experience with Multiprocessor Algorithms.
IEEE Transactions on Computers, C-31(4), April 1982.

Peter J. Denning.
The Working Set Model for Program Behavior.
Communications of the ACM, 11(5):323-333, May 1968.

Peter J. Denning.
Virtual Memory.
ACM Computing Surveys, 2(3):153-189, September 1970.

Peter J. Denning.

On Modeling Program Behavior.

In Proceedsings of Spring Joint Computer Conference,
pages 937-944, AFIPS Press, 1972.

Peter J. Denning.

Working Sets Past and Present.

IEEE Transactions on Software Engineering, SE-6(1):64-84,
January 1980. v

J.B. Dennis and E.C. Van Horn.

Programming Semantics for Multiprogrammed Computa-
tions.

Commaunications of the ACM, 9(3):143-155, March 1966.

E.W. Dijkstra.

Cooperating Sequential Processes.

In F. Genuys, editor, Programming Languages, Academic
Press, New York, 1968. .

M.C. Easton and P.A. Franaszek.

Use Bit Scanning in Replacement Decisions.

Technical Report RC-6192, IMB Research, Yorktown
Heights, September 1976.

BIBLIOGRAPHY 197

[Ellis 85]

[Emrath 85]

[Finkel 80]

[Finkel 85]

[Fitzgerald 86]

[Flynn 66]

[Fowler 86]

[Frank 84]

[Friedman 78]

John R. Ellis.
Private communication, 1985.

Perry Emrath.
Xylem: An Operating System for the Cedar Multiprocessor.
Software, :30-37, July 1985.

R. Finkel.

The Arachne Kernel.

Technical Report TR-380, University of Wisconsin, April
1980.

R. Finkel and U. Manber.

DIB - A Distributed Implementation of Backtracking.

In The Fifth International Conference on Distributed Com-
puting Systems, May 1985.

R. Fitzgerald and R.F. Rashid.

The Integration of Virtual Memory Management and Inter-
process communication in Accent.

ACM Transactions on Computer Systems, (2):147-177, May
1986.

M.J. Flynn.)
Very High Speed Computing Systems.
In Proceedings of IEEE, pages 1901-1909, December 1966.

Robert J. Fowler.
Decentralized Object Finding Using Forwarding Addresses.
PhD thesis, University of Washington, 1986.

Steven J. Frank.

Tightly Coupled Multiprocessor System Speeds Memory-
access Times.

Electronics, :164-169, January 1984,

D. Friedman and D. Wise.

CONS Should not Evaluate its Arguments.

In S. Michaelson and R. Milner, editors, Automata, Lan-
guages, and Programming, pages 257-284, Edinburgh Uni-
versity Press, 1976.

BIBLIOGRAPHY 198

[Fuller 78]

[Gelernter 85]

[Gonzalez 78]

[Goodman 83]

[Habermann 76)

[Halstead Jr 84]

[Halstead Jr 85]

[Heid 70]

(Henderson 76]

S. Fuller, J. Ousterhout, L. Raskin, P. Rubinfeld, P. Sindhu,
and R. Swan.

Multi-microprocessors: an overview and working example.
Proceeding of the IEEE, (2):216~228, February 1978.

David Gelernter.

Generative Communication in Linda.

ACM Transactions on Programming Languages and Systems,
(1):80-112, January 1985.

T. Gonzalez and S. Sahni.
Preemptive Scheduling of Uniform Processor Systems.
Journal of the ACM, 25(1):92-101, January 1978.

James R. Goodman.

Using Cache Memory to Reduce Processor-memory Traffic.
In Proceedings of the 10th Annual Symposium on Computer
Architecture, pages 124-131, June 1983.

A.N. Habermann.
Introduction to Operating System Design.
Science Research Associates, 1976,

Robert H. Halstead Jr.

Implementation of Multilisp: Lisp on a Multiprocessor.

In ACM Symposium on Lisp and Funciional Programming,
pages 9-17, 1984.

Robert H. Halstead Jr.

wiultilisp: A Language for Concurrent Symbolic Computa-

tion.
ACM Transactions on Programming Languages and Systems,
October 1985.

M. Heid and R.M. Karp.
The Traveling-salesman Problem and Minimum Spanning
Trees.

Operation Research, 17(12):1139-1167, December 1970.

P. Henderson and J.H. Morris.
A Lazy Evaluator.

BIBLIOGRAPHY 199

[Herlihy 82]

[Hillis 85]

[Hoare 62]

[Hoare 74]

[Hudak 85)

[Hudak 86a]

[Hudak 86b

[Jones 79]

In Conference Record of the third Annual ACM Sympo-
sium on Principles of Programming Languages, pages 95—
103, 1976.

M. Herlihy and B. Liskov.

A Value Transmission Method for Abstract Data Types.
ACM Transactions on Programming Languages and Systems,
4(4):527-551, October 1982.

Daniel M. Hillis.
The Connection Machine.
MIT Press, 1985.

C.A.R. Hoare.
Quicksort.
Computer Journal, 5(1):10-15, 1962.

C.A.R. Hoare.
Monitors: An Operating System Structuring Concept.
Commaunications of the ACM, 17(10):549-557, Ociober 1974.

P. Hudak and B. Goldberg.

Distributed Execution of Functional Programs Using Serial
Combinators.

IEEE Transactions on Computers, C-34(10):881-891, Octo-
ber 1985.

P. Hudak and L. Smith.

Para-Functional Programming: A Paradigm for Program-
ming Multiprocessor Systems.

In Conference Record of the Twelvth Annual ACM Sympo-
stum on Principles of Programming Languages, pages 243-
254, January 1986.

Paul Hudak.
Private communications, 1986.

A.K. Jones, R.J. Chansler, I.LE. Durham, K. Schwans, and S.
Vegdahl.

StarOS, a Multiprocessor Operating System for the Support

of Task Forces.

BIBLIOGRAPHY 200

[Jones 80]

[Karp 72]

[Katz 85]

[Knuth 73]

(Kronenberg 86]

[Lai 84]

[Lampson 68|

[Larus 84]

In Proceedings of the Seventh Symposium on Operating Sys- -
tems Principles, pages 117-127, 1979.

A. K. Jones and P. Schwarz.
Experience Using Multiprocessor Systems — A Status Re-
port.

- ACM Computing Surveys, 12(2), June 1980.

R.M. Karp.

Reducibility Among Combinatiorial Problems.

In R.E. Miller and J.W. Thatcher, editors, Complezity of
Computer Computations, pages 85-103, Plenum Press, 1972.

R. H. Katz, S. J. Eggers, D.A. Wood, C. L. Perkins, and
R.G. Sheldon.

Implementing A Cache Consistency Protocol.

In Proceedings of the 12th Annual Symposium on Computer
Architecture, pages 276-283, June 1985.

Donald E. Knuth.
The Art of Computer Programming, Volume III.
Addison-Wesley Publishing Company, 1973.

N.P. Kronenberg, H.M. Levy, and W.D. Strecker.
VAXclusters: A Closely-coupled Distributed System.

ACM Transactions on Computer Systems, 4(2):130-146,
May 1986.

T. Lai and S. Sahni.
Anomalies in Parallel Branch-and-Bound Algorithms.
Commaunications of the ACM, 27(6):594-602, June 1984.

Butler W. Lampson.
A Scheduling Philosophy for Multiprocessing Systetms.
Communications of the ACM, 11(5):347-360, May 1968.

James R. Larus.

Using the Baskett Test A Benchmark for the Butterfly Mul-
tiprocessor.

February 1924.

Draft.

BIBLIOGRAPHY 201

[Lazoweska 84]

[Leach 82]

[Leach 83]

[Levin 86]

[Levy 82]

[Li 86)

[McCreight 84]

[Metcalfc 76]

[Mitchell 79]

E.D. Lazoweska, J. Zahorjan, D.R. Cheriton, and W.
Zwaenepoel.

File Access Performance of Disklcss Workstations.

Tech Report STAN-CS-84-1010, Stanford University, 1984.

P.J. Leach, B.L. Stumpf, J.A. Hamilton, and P.H. Levine.
UIDs as Internal Names in A Distributed File System.

In Proceedsngs of the ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, pages 34-41, 1982,

P.J. Leach, P.H. Levine, B.P. Douros, J.A. Hamilton, D.L.
Nelson, and B.L. Stumpf.

The Architecture of an Integrated Local Network.

IEEE Journal on Selected Areas in Communications, 1983.

Roy Levin.
Private communications, 1986.

H.M. Levy and P.H. Lipman.

Virtual Memory Management in the VAX/VMS Operating
System.

IEEE Computer, :35-41, March 1982,

Kai Li.

A New List Compaction Method.

Software Practice and Ezperience, 16(2):145-163, February
1986.

E. McCreight.
The Dragon Computer system, An Early Overview, 1084.
Draft document.

R.M. Metcalfc and D.R. Boggs.

Ethernet: Distributed Packet Switching for Local Computer
Networks.

Communications of the ACM, 19(7), July 1976.

J.G. Mitchell, W. Maybury, and R. Sweet.
Mesa Language manual, version 5.0.
Tech Report CSL-79-3, Xerox Parc, 1979.

BIBLIOGRAPHY 202

[Motorola 84]

[Muntz 70]

[Nelson 81]

[Ousterhout 80)

[Pease 80]

[Pfister 85]

[Powell 83]

[Rashid 81]

Motorola.

M68000 16/82-bit Microprocessor.
Prentice-Hall, Inc., fourth edition edition, 1984.
Programmer’s Reference Manual.

R.R. Muntz and E.G. Coffman Jr.
Preemptive Scheduling of Real-time Tasks on Multiprocessor

Systems.
Journal of the ACM, 17(2):324-338, April 1970.

Bruce J. Nelson.
Remote Procedure Call.
PhD thesis, Carnegie-Mellon University, May 1981.

J.K. Ousterhout, D.A. Scelza, and P.S. Sindhu.

Medusa: An Experiment in Distributed Operating System
Structure.

Commaunications of the ACM, 23(2):92-105, February 1980.

S.M. Pease and L. Lamport.
Reaching Agreement in the Presence of Faults.
Journal of the ACM, 27(2):228-234, April 1980.

G.F. Pfister, W.C. Brantley, S.L. Harvey, W.J. Kleinfelder,
K.P. McAuliffe, E.A. Melton, V.A. Norton, and J. Weiss.
The IBM Research Parallel Processor Prototype (RP3).

In Proceedings of the 1985 International Conference on Par-
allel Processing, 1985,

Michael L. Powell.

Process Migration in DEMOS/MP. .

In Proceedings of the Ninth Symposium on Operating Systems
Principles, pages 110-119, 1983.

R.F. Rashid and G.G. Robertson.

Accent: A Communication Oriented Network Operating Sys-
tem Kernel.

In Proceedings of the Eighth Symposium on Operating Sys-
tems Principles, pages 64-75, December 1981,

BIBLIOGRAPHY 203

[Reed 79]

[Ritchie 78]

[Robinson 79

[Seitz 85]

[Smith 82]

[Smith 85]

[Snyder 82]

[Snyder 86]

[Spector 81]

David P. Reed and Rajendra K. Kanodia.
Synchronization with Eventcounts and Sequencers.
Commaunications of the ACM, 22(2):115-123, February 1979.

D.M. Ritchie and K. Thompson.
The UNIX Time-sharing System.
Bell System Technical Journal, 57:1905-1929, July 1978.

J.T. Robinson.

Some Analysis Techniques for Asynchronous Multiprocessor
Algorithms.

IEEE Transactions on Software Engineering, SE-5(1), Jan-
uary 1979.

Charles L. Seitz.
The Cosmic Cube.
Communications of the ACM, 28(1):22-33, January 1985.

Alan J. Smith.
Cache Memories.
ACM Computing Surveys, 14(3):473-530, September 1982.

Alan J. Smith.

Disk Cache—Miss Ratio Analysis and Design Considera-
tions.

ACM Transactions on Coraputer Systems, 3(3):161-203, Au-
gust 1985.

Lawrence Snyder.
Introduction to the Configurable, Highly Parallel Computer.
Computer, 15(1):47-56, 1982.

Lawrence Snyder.

Type Architectures, Shared Memory and the Corollary of
Modest Potential.

In Annual Review of Computer Science, 1986.

To appear.

Alfred Z. Spector.
Multiprocessing Architectures for Local Computer Networks.

BIBLIOGRAPHY 204

[Spector 82]

[Stone 77]

[Tang 76]

[Tarjan 84]

[Thacker 84]

{Thacker 86]

[Tuomenoksa 85]

[Wilkes 79]

Ph.D. thesis STAN-CS-81-874, Stanford University, August
981.

-

Alfred Z. Spector.

Performing Remote Operations Efficiently on a Local Com-
puter Network.

Commaunications of the ACM, 25(4):260-273, April 1982.

H.S. Stone.

Multiprocessor Scheduling with the Aid of Network Flow Al-
gorithms. -

IEEE Transactions on Software Engineering, SE-3(1):85-93,
January 1977.

C.K. Tang.

Cache System Design in The Tightly Coupled Multiproces-
sor System.

In Proceedings of AFIP National Computing Conference,
pages 749-753, 1976.

R.E. Tarjan and J. Van Leeuwen.
Worst-case Analysis of Set Union Algorithms.
Journal of the ACM, 31(2):245-281, April 1984.

Chuck Thacker and et al.
Private communications, 1984.

Chuck Thacker and et al.
Private communications, 1986.

D.L. Tuomenoksa and H.J. Siegel. .

Task Scheduling on the PASM Parallel Processing System.
IEEE Transactions on Software Engineering, SE-11(2):145-
157, February 1985.

M.V. Wilkes and D.J. Wheeler.

The Cambridge Digital Communication Ring.

In Proceedings of the Local Area Communications Network
Symposium, May 1979.

BIBLIOGRAPHY 205

[Yen 85] .

[Zwaenepoel 85)

W. C. Yen, . W. L. Yen, and K. Fu.

Data Coherence Problem in a Multicache System.

IEEE Transactions on Computers, C-34(1):56-65, January
1985.

Willy Zwaenepoel.
Protocols for Large Data Transfers over Local Networks,
Tech Report TR85-23, Rice University, July 1985.

