
The Farsite Project: A Retrospective

William J. Bolosky, John R. Douceur, Jon Howell

Microsoft Research Redmond

johndo@microsoft.com

ABSTRACT

The Farsite file system is a storage service that runs on the

desktop computers of a large organization and provides the

semantics of a central NTFS file server. The motivation behind

the Farsite project was to harness the unused storage and network

resources of desktop computers to provide a service that is

reliable, available, and secure despite the fact that it runs on

machines that are unreliable, often unavailable, and of limited

security. A main premise of the project has been that building a

scalable system requires more than scalable algorithms: To be

scalable in a practical sense, a distributed system targeting 10
5

nodes must tolerate a significant (and never-zero) rate of machine

failure, a small number of malicious participants, and a substantial

number of opportunistic participants. It also must automatically

adapt to the arrival and departure of machines and changes in

machine availability, and it must be able to autonomically

repartition its data and metadata as necessary to balance load and

alleviate hotspots. We describe the history of the project,

including its multiple versions of major system components, the

unique programming style and software-engineering environment

we created to facilitate development, our distributed debugging

framework, and our experiences with formal system specification.

We also report on the lessons we learned during this development.

Categories and Subject Descriptors

D.4.3 [Operating Systems]: File Systems Management –

distributed file systems.

General Terms

Design, Documentation, Management.

Keywords

Serverless distributed file system, project management, system

design iteration, software engineering, distributed debugging,

formal system specification, tech transfer.

1. INTRODUCTION

From 1999 through 2005, Microsoft Research’s Farsite project

strove to build a scalable, serverless distributed file system. This

system functions as a centralized file server, but its physical

realization is dispersed among a network of incompletely trusted

desktop workstations. The Farsite system was intended to provide

both the benefits of a central file server (a central namespace,

location-transparent access, and reliable storage) and the benefits

of local desktop file systems (low cost, privacy, and resistance to

localized faults). Farsite replaces the physical security of a server

in a locked room with the virtual security of cryptography,

randomized replication, and Byzantine fault-tolerant replicated

state machines (RSMs) [6]. Farsite was designed to support

desktop workloads in academic and corporate environments.

Simply stated, the goal of the Farsite project was to build a

serverless distributed file system that is truly scalable, particularly

to the scale of 10
5

 machines. In the systems community, the term

“scalable” typically refers to scalable protocols, algorithms, and

distributed data structures. However, we chose to regard the term

in a broader sense, arguing that practical scalability entails three

other requirements: tolerance of failed machines, security against

compromised machines, and automatic administration.

Strong fault tolerance is critical because, in a network of 10
5

machines, partial infrastructure failure is not merely the common

case; it’s the only case. There will never be a time when all

machines are up and working at the same time. This precluded

any fault-recovery solution that relied on waiting for a time when

the infrastructure is fault-free, because no such time will ever

come to pass.

Security is just as critical, not only against outside threats but also

against inside ones. Virtually every large corporation includes at

least one disgruntled employee [26], and universities are filled

with curious, inventive, and occasionally antisocial students.

Since we were proposing to run an organization’s file services on

the desktop computers of its constituents, the very infrastructure

of the system could not be fully trusted.

Administration is already challenging. Large data centers simplify

their administration with uniform hardware selection and standard

machine configuration, which are not available options when

running a system on extant desktop computers that have been

arbitrarily configured by their immediate users. As a practical

matter, any system whose manual administration load increases

with the size of the system will run up against the limits of what

the administrative staff can reasonably support. Thus, Farsite

must adapt to the arrival and departure of machines and changes

in machine availability, autonomically repartitioning its data and

metadata to balance load and alleviate hotspots.

We were very upfront about our non-goals. We found it quite

striking that as soon as we’d tell people that we were developing a

new distributed file system with the above well-defined goals,

they would immediately suggest other goals we could pursue as

well. These other goals included large-scale write sharing, high-

throughput parallel file I/O, transactionality, integration of file-

system stores with database stores, new models of file-system

structure (such as attribute-based systems), and weak consistency

for offline access. In an effort to keep an already challenging

17

problem from becoming unmanageable, we explicitly disclaimed

these additional goals.

The next section outlines the project’s history. Section 3 details

the multiple versions we wrote of three main system components:

the file-system driver, the directory service, and the RSM

substrate. Section 4 describes our programming models and how

they evolved over the course of the project. Section 5 describes

our distributed debugging framework, and Section 6 reports on

our experiences with formal system specification. Section 7

describes a couple of key lessons we take away from the project.

2. PROJECT HISTORY

In early 1999, while ramping down other projects, we
*

 started

thinking seriously about Farsite as our next big systems project.

In our spare time, we did a lot of brainstorming throughout the

spring, and then over the summer, we did a feasibility study [4] to

determine whether the idea of a serverless distributed file system

running on desktop machines was even plausible. Buoyed by our

results, we soon began designing the system architecture.

At the beginning of 2000, we started writing user-mode code, and

by the spring, we started writing kernel-mode code for a file-

system driver based on the Windows Single Instance Store filter

driver (§3.1.1). We spent the remainder of 2000 doing two

things: designing many aspects of the system that were both near-

term and far-term, and implementing much of the near-term

design. We designed the security model, the naming and

certification architecture, the distributed duplicate-file-coalescing

system, the quota-control architecture, the on-disk file format, a

strategy for data durability, replica placement algorithms, and a

scheme for directory encryption [12]. We implemented the secure

messaging infrastructure, kernel/user communication code, the

local cache manager, initial parts of the replicated state machine

substrate (§3.3.1), lots of crypto stuff, and an epidemic upgrade

system. By the end of 2000, we were stress testing the system on

40 machines in our newly set-up lab.

2001 was the year of rewrites. We rewrote the file-system driver

based on the FastFAT file system (§3.1.2), and we then re-rewrote

it as a mini-RDR (§3.1.3). We rewrote the directory service

(§3.2.1) to support persistence. We rewrote our programming-

model infrastructure (§4) to allow CTM-style code [2] in addition

to event-driven code. It wasn’t all rewrites; we also developed an

encrypted key cache to improve crypto performance, worked out

details of a metadata-hint caching strategy, and added MACs to

the messaging system. We developed, analyzed, and simulated

file-placement algorithms [7,8,9,10] and the distributed duplicate-

coalescing system [11]. By the end of 2001, the code was

functional and stable enough that we had a large benchmark – a

modified version of the Andrew benchmark – working for very

long runs.

In 2002, we started thinking seriously about distributing the

directory service, and we concluded that we would need to start a

new design (§3.2.2); we began with informal design and decided

*

 Because this paper is a retrospective, covering work that was

performed over almost seven years, the term “we” herein refers

not merely to the present authors but rather to the entire project

team.

that for a problem of this complexity we would be better off trying

formal specification (§6). On the implementation side, we got file

replication working, got the directory state and local file cache

stored persistently, implemented caching file data in the driver for

performance, started implementing the distributed duplicate-

coalescing system, and replaced our earlier file-based metadata

storage system with a real database, namely SQL Server. We built

a trace replayer, which helped to expose a raft of bugs that we

spent a lot of time fixing, until we got the system stable enough to

run a full day’s replayed traces. In the process, we discovered that

the high loads resulting from initializing the trace state could

cause significant overloads in the system; it would take much of

the following year to fully address this problem. At the end of

2002, we published our main system paper on Farsite [1].

In 2003, tech-transfer was very much on our minds. We worked

with several prospective recipients for the Farsite technology, and

we spent considerable time addressing issues that these groups

considered important. This included getting Farsite’s files to

work with Windows Single Instance Store [5], checkpointing and

restarting the directory service, supporting quotas, replacing the

Byzantine-fault-tolerant RSM substrate (§3.3.1) with a fail-stop-

fault-tolerant one (§3.3.2), and significant performance turning.

By 2004, aside from the ongoing design work on the distributed

directory service (§3.2.2), all of our efforts were focused on tech-

transfer. Major components included client-side crash recovery

and checkpoint/restart for the centralized directory service. After

nearly two years of effort in formal specification, we coded the

distributed directory service this year. Among other changes, this

involved switching the service’s persistent store from SQL Server

to the store in our atomic-action substrate (§4.3).

By 2005, most of our tech-transfer prospects had disappeared, at

least those that had the potential of transferring a fully functional

distributed file system. We refocused our efforts on transferring

subsystems and components of the Farsite system, most notably

our fail-stop-fault-tolerant RSM substrate (§3.3.2). During this

year, most of the team began transitions to other projects. We

continued developing the distributed directory service, mainly as

an academic exercise targeted at publication [15].

To the extent that research projects ever have a formal end, Farsite

came to an end in early 2006.

3. DESIGN ITERATIONS

Over the course of the Farsite project, we developed three

implementations of the file-system driver, two implementations of

the directory service, and two implementations of the RSM

substrate. Although these cases seem superficially parallel, their

reasons for re-implementation differ significantly. In particular,

with the benefit of hindsight, we would have developed only one

file-system driver, but we would still have developed both

directory services and both RSM substrates.

3.1 File-System Drivers

We created the three versions of the file-system driver as our

knowledge of the proper way to build Windows-based file

systems improved. We started with a design that was loosely

based on some previous kernel-mode work some project members

had done, primarily because of familiarity with the design rather

than because it the best way to structure the driver. After some

18

experience with that problems of that approach, we tried a new

design based on the existing Windows FastFAT file system on the

theory that FastFAT was proven to work properly. However, we

discovered that while it was an appropriate design for a purely

local file system, it was at best awkward to do some operations

necessary for a network file system, such as forcing the system

cache to purge all of the data for a file so that it can be used

remotely. This led to the final design as a mini-Redirector using

Windows’ (at the time) new functionality for implementing

network file systems.

3.1.1 Driver built based on Windows SIS driver

Our initial attempt at a file-system driver was based on the

Windows Single Instance Store (SIS) driver [5]. We chose this

design because a number of us had just finished the SIS project,

and so were very familiar with the code and its interaction with

the system. SIS is implemented as a file-system filter driver,

which sits above a local or remote file system on the IO stack, and

is able to inspect, alter or directly implement any calls that are

destined for the underlying file system. While this might seem an

odd design for a service that is a file system itself rather than an

added service for some existing file system, in point of fact Farsite

(in all three incarnations) never implemented the on-disk portion

of the file system and instead relied on NTFS to do that. So, one

view of what Farsite does is to provide a (very involved) filter on

top of a local NTFS implementation.

After a relatively small time, we discovered that while in principle

Farsite could be viewed as a filter on NTFS, in practice we had to

reimplement much of NTFS’s functionality, including the very

complicated pathname parsing and lookup code. Dealing with

whether Farsite or NTFS owned the file object associated with

handles was at best awkward and never worked quite right, and

synchronizing access to files among the filter, NTFS and the rest

of the NT kernel led to difficult-to-fix deadlocks.

While we abandoned this design early on, some of the code that

we developed turned out to be useful and made it into the two

subsequent versions. In particular, the code that implemented

convergent encryption and Merkle-tree based content verification,

and the code for passing messages between the driver and the

user-mode daemon survived largely unchanged.

3.1.2 Driver derived from FastFAT

The experience with the SIS-derived driver led us to start over

based on an existing file-system driver. We chose FastFAT rather

than NTFS not for the obvious reasons (that it is published,

documented, and publicly available), but rather because its code

structure is much simpler. We removed the portion of the driver

that dealt with on-disk structures and replaced it with calls into

NTFS. There was no confusion about ownership of file objects,

and the deadlocks largely disappeared. Furthermore, we were

able to get a mostly-working implementation in fairly short order.

However, the FastFAT model didn’t provide an easy way to evict

data from the cache as is required to maintain consistency when a

file is accessed writably by multiple nodes, it didn’t have code

dealing with access control lists (all files in FastFAT provide full

access to all users), and it wasn’t really designed to stop while

calls are made up to user level during certain operations

(particularly file open).

For a second time, we abandoned the driver and started more-or-

less from scratch.

3.1.3 Driver built as mini-redirector

The final version of the driver is a mini-redirector written in terms

of the Windows Redirected-Drive Buffering SubSystem

(RDBSS), part of the Windows Installable File System Kit [23].

This is the way that Microsoft recommends building network file

systems. At the time we started it, no documentation was

available. However, because we were inside Microsoft, we were

able to obtain a (preliminary) copy of the WebDAV mini-

redirector to use as a template.

WebDAV seemed to be particularly apropos, because, like

Farsite, it stored files in NTFS and implemented much of its

functionality in user-mode, and so had to make calls between the

kernel and user-mode components. When we merged it in with

the existing user-mode component and the kernel-mode code we

retained from the FastFAT implementation, however, we chose to

keep two parallel user-to-kernel communication channels, the old

Farsite one and the WebDAV one. They were very different in

their design and never lived comfortably together. However,

absent a good reason to get rid of one or the other, they co-existed

from 2001 to 2004. In 2004, we were working on enabling the

system to losslessly recover from a crash and restart of the user-

mode component. Doing this meant keeping careful track of the

set of calls that were outstanding, and the set of updates that the

kernel had sent to the user-mode component. It turned out that

the WebDAV communication channel was not well-suited to

either task, and so we finally removed it in favor of the older

Farsite channel.

The mini-RDR/RDBSS structure turned out to be a good match to

Farsite’s needs, even though it wasn’t intended to be used with a

file system that supplied all its data from the local disk
*

.

RDBSS’s function of handling most of the necessary interface

with the system’s virtual memory and caching components made

coding significantly easier, eliminated several potential sources of

deadlocks and race conditions, and did not remove any flexibility

that we needed to get our driver working properly. We should

have started with this design (and had it been documented when

we started, we like to think we would have); we wasted far too

much time on the first two implementations, and learned relatively

little from them, beyond the fact that they were the wrong choice.

3.2 Directory Services

We built two separate versions of the directory service, one that is

centralized and one that is distributed. Although this was not

really intentional, in hindsight we believe it was a good thing to

do. The centralized directory service provided an expedient path

to getting a working system without the significant complexity of

distributing file-system metadata. This was particularly important

since it took two people nearly three years to design and build the

distributed directory service.

*

 While the file data in fact go off-machine, all off-machine

operations are performed in user-mode, so from the kernel’s

point of view file data are solely local.

19

3.2.1 Centralized directory service

We did not plan for the centralized directory service to remain

centralized. Our intent had been to turn it into a distributed

service, and we put some substantial effort into thinking about

how to do that. However, we focused the bulk of our efforts on

building a working service, irrespective of the eventual need for

distribution.

Code structure – The centralized directory service was structured

as a deterministic state machine, so that it could run on an RSM

substrate (§3.3). Writing a sizeable and complex piece of

software as a deterministic state machine was harder than we had

expected. Not only is the state-machine model an unintuitive and

unfamiliar way to structure systems code, but we had to eliminate

every potential source of nondeterminism to prevent the state-

machine replicas from diverging (§7.1). The service was

originally written in an event-driven style (§4.1) but later evolved

to a mix of event-driven and cooperative-task-management (§4.2)

styles.

Leases – This centralized directory service temporarily loans

authority over portions of file-system metadata to clients via

leases. There are four classes of leases: content leases, name

leases, mode leases, and access leases.

Content leases govern which client machines currently have

control of a file’s content. They can be read/write or read-only,

and they follow single-writer/multi-reader semantics.

Name leases govern which client machine currently has control

over a name in the directory namespace. Name leases are always

read/write, and they transitively extend to all unused child names.

Thus, when a client uses a name lease to create a new directory, it

can immediately create files and subdirectories in that directory.

Mode leases govern which clients have a file open for Windows’

various access and sharing modes [16], which provide explicit

control over file-sharing semantics. There are six types of mode

leases: read, write, and delete mode leases are used to open a file

for read access, write access, and delete access, respectively. The

other three, exclude-read, exclude-write, and exclude-delete mode

leases are used to open a file without read sharing, write sharing,

or delete sharing, respectively. The sense of these latter modes is

inverted to preserve standard lease-conflict rules.

Access leases govern which clients can perform operations that

have bearing on the deletion of a file. In Windows, a file is

deleted by opening it, marking it for deletion, and closing it. The

file is not truly deleted until the last handle is closed on a

deletion-marked file. While the file is marked for deletion, no

new handles may be opened on the file. There are three types of

access leases: public, protected, and private. As one might expect,

a public lease grants shared access and a private lease grants

exclusive access. A protected lease grants shared access and the

guarantee of a callback to the lease holder before any other client

is granted access. Opening a file, closing a file, and marking a file

for deletion all require access leases, selected in a combination to

provide Windows’ deletion semantics.

Access control – The centralized directory service enforces write-

access control directly, by checking a user’s cryptographically

established identity against an access control list for the file or

directory in question. Because directory service modifies state via

a Byzantine-fault-tolerant protocol (3.3.1), we trust the service to

apply only correct updates. By contrast, since a single faulty

machine can inappropriately leak information, the service does

not directly enforce read-access control. Instead, file content is

encrypted so that it is only readable by clients whose users have

an appropriate decryption key.

Distribution (conceptual) – We had developed several ideas for

partitioning and distributing file-system metadata among multiple

RSM groups. For purposes of discussion, we regard each RSM

group as a server. Our intent had been to partition file metadata

among servers according to file path names. Each client would

maintain a cache of mappings from path names to their managing

servers, similar to a Sprite prefix table [28]. The client could

verify the authority of the server over the path name by evaluating

a chain of delegation certificates extending back to the root server.

To diffuse metadata hotspots, servers would issue stale snapshots

instead of leases when the client load got too high, and servers

would lazily propagate the result of rename operations throughout

the name space.

Integration with driver –The directory service is all user-level

code, but the client-side code that communicates with the service

delegates some of its leased authority to the file-system driver.

This enables many operations to be performed and logged directly

in the driver instead of requiring an upcall to Farsite’s user-level

code, which is important for performance. For this reason, the

driver understands much of the directory-service lease structure.

3.2.2 Distributed directory service

In attempting to turn the centralized directory service into a

distributed service, we learned that many of the ideas we had for

how to do this were problematic. In particular, the centralized

service had assumed that metadata partitioning would eventually

be partitioned according to file path name; however, this turns out

to complicate rename operations that span partitions, so we opted

to instead partition according to file identifier. In the absence of

path-name delegation, name-based prefix tables are inappropriate.

Similarly, if partitioning is not based on names, consistently

resolving a path name requires access to metadata from all files

along a path, so delegation certificates are unhelpful for

scalability. Our ideas about stale snapshots and lazy rename

propagation would allow the name space to become inconsistent,

which can in turn cause orphaned loops in the namespace [15].

We thus built the distributed directory service from scratch, using

an entirely different code structure, lease arrangement, and

metadata distribution scheme.

Code structure – Like the centralized directory service, the

distributed directory service was structured as a deterministic state

machine; however, we never completed the integration of the

distributed directory service with an RSM substrate. The service

was written in an atomic-action coding style (§4.3). Nearly half

of the application code is data-structure definitions and support

routines that were mechanically extracted from a formal TLA+

specification of the directory service (§6.1).

Leases – The distributed directory service replaces the four

classes of leases in the centralized service with two classes:

shared-value leases and disjunctive leases. We observed that the

complex lease classes in the centralized service were conflations

of metadata with protections over that metadata. In the distributed

20

service, we separated these notions into specific metadata fields

and comparatively simple leases that protect those fields.

Shared-value leases are conventional single-writer/multi-reader

leases over fields of a file; these leases are used for a file’s content

field (really a hash of the content, since the actual content is

stored separate from the directory service), child name fields, and

various metadata fields, including the file’s deletion disposition.

As an important efficiency enhancement, the service has a special

shorthand representation for an infinitely large set of child name

fields; this representation is used to grant access to all child names

of a file except an explicitly enumerated exclusion set.

Disjunctive leases are used to protect seven metadata fields: one

field represents the set of clients who have handles open on the

file, and six other fields each represent the set of clients who have

the file open for each access or sharing mode. It would be

inefficient for clients to have to obtain a read/write shared-value

lease over one of these sets, merely to add itself to the set when

opening a handle or to remove itself from the set when closing the

handle. So instead, each client has a Boolean self value that it can

write and a Boolean other value that it can read. The other value

for each client x is defined as:

∑
≠

=

xy

yx

selfother

where the summation symbol indicates a logical OR. Clients set

their self values when opening handles and clear their self values

when closing handles. Self values are protected by write leases,

and other values are protected by read leases.

Access control (conceptual) – We have neither designed nor

implemented access control in the distributed directory service.

However, we believe we could extend the use of shared-value

leases for the purpose of access control. The basic idea is that

each file would have an access-control metadata field for each

principal; the value of the field would indicate that principal’s

access rights. To access a file, a client would obtain a read lease

over the requesting principal’s access-control field, the value of

which would let the client know whether to fail the operation or

proceed. Like name leases, we would have a shorthand

representation for leasing an infinitely large set of access-control

fields; this could be granted to a client whose principal is

authorized to change the access-control list. As in the centralized

service, we would still use cryptography to protect the actual data

against leaks.

Distribution – In contrast to our ideas for distributing the

centralized directory service, the distributed directory service does

not partition its metadata according to file path name. Instead, it

partitions according to file identifier, so as to avoid implicitly

coupling the logistical issue of which server manages which

metadata with the operational issue of correctly implementing

directory rename. The file identifiers have a tree structure that

stays approximately aligned with the tree structure of the name

space, so files can be efficiently partitioned with arbitrary

granularity while making few cuts in the name space. One

consequence of this tree structure is that file identifiers have

variable length; this is not a problem in practice, because (1) the

size of identifiers tends to remain quite manageable – generally

smaller than an MD5 hash – and (2) the variability is encapsulated

in a small class, so it is unseen by the rest of the system.

Since file-system metadata is distributed, it is necessary to provide

a means for obtaining consistent access to file path names. In the

absence of such means, two concurrent rename operations can

produce an orphaned loop in the namespace [15]. The service

provides such a means in the form of a recursive path lease, which

is a read-only lease on the chain of file identifiers of all files on

the path up to the file-system root. Path leases are recursively

issued to the child files of the file whose path is being leased, so

the path-lease load on any given file is bounded by the number of

children it has.

There are two file-system operations that can span multiple

servers: (1) renaming a file and (2) closing the last handle on a

deletion-marked file, which unlinks the file. Rename can span

three servers: the server that owns the source parent directory, the

server that owns the destination parent directory, and the server

that owns the file being moved. Close-and-unlink can span two

servers: the server that owns the file being closed and the server

that owns the directory from which the file is being unlinked. For

these two operations, the servers coordinate their updates to

ensure atomicity. In particular, the servers use two-phase locking,

wherein one server acts as the leader and the other servers lock the

relevant metadata fields of their files while they wait for the leader

to coordinate the operation update.

Integration with driver (conceptual) – We have not integrated

the distributed directory service with the file-system driver. There

are two challenges to doing so: First, the driver’s permission

model is based on the leases used by the centralized directory

service. We would have to either modify the driver’s internal

representation of operational permission or attempt to shim the

distributed directory service’s leases into a representation that

could be understood by the driver. In practice, we would likely

follow some combination of these approaches. Second, the driver

uses fixed-size file identifiers, unlike the variable-size identifiers

used by the distributed directory service. The most expedient way

to address this mismatch is to provide a translation table at the

interface between the components.

3.3 Replicated-State-Machine Substrates

We built two separate RSM substrates, one that tolerates

Byzantine faults and one that tolerates only stopping faults. The

Byzantine-fault-tolerant RSM was intended to address the original

Farsite vision of running exclusively on client desktop machines.

However, we found some potential product-group interest in

running a Farsite-like system on trusted machines inside a data

center, so we built a second RSM substrate that more efficiently

supports the weaker faults expected in such an environment.

3.3.1 Byzantine-fault-tolerant RSM

We envisioned Farsite being deployed on the desktop computers

in a university, wherein it would have to continue operating

despite the curious tinkering of our hypothetical attacker, the

SUSSCRAM (Smart Undergraduate Student with Source Code

and Root Access to a Machine). This is an attack model that is

ideally suited for Byzantine fault tolerance (BFT), because BFT

assumes that malicious machine failures are independent, which

they will generally not be if they are caused by software bugs or

viruses.

Our BFT RSM substrate was based on the work of Castro and

Liskov [6]. It ensures both safety and liveness as long as strictly

21

fewer than one third of all replicas are faulty. Although it requires

weak synchrony assumptions to provide liveness, it needs no

synchrony assumptions to guarantee safety. It executes read-only

operations with a single round trip and read/write operations with

two round trips. It avoids the expense of public-key cryptography

in the common case, relying instead on symmetric-key message

authentication codes, which are significantly faster to compute.

3.3.2 Paxos-based RSM

Inside a data center, the fault assumptions underlying BFT

become less applicable. It is still possible for a machine to exhibit

Byzantine behavior due to software bugs or viruses, but such

behavior would not manifest with independent probability among

machines. By contrast, stopping failures may well occur with

independent probability if simple steps are taken to remove the

most common correlating factors, such as co-locating machines of

a replica group in a single rack, on a single power supply, or with

a single cooling unit.

When stopping failures are the main concern, there are more

efficient replica-coordination strategies than BFT. In particular,

the Paxos algorithm [18, 19] ensures both safety and liveness as

long as strictly fewer than half of all replicas are faulty. Our RSM

substrate [22] allows not merely replication and coordination but

also migration of the service to a new set of machines, which we

call changing the configuration of the service. To accomplish this

goal without excessively complicating the protocol, we introduced

the idea of configuration-specific replicas, wherein each replica is

associated with one and only one configuration. Multiple replicas

for different configurations can execute concurrently on a single

machine, but for simplicity they remain logically separated,

although they share execution modules for efficiency.

4. PROGRAMMING MODELS

Based on our prior experience in building systems, we were well

aware that the most challenging and frustrating bugs tend to arise

from concurrency issues, yielding faulty behavior that is often

difficult to reproduce reliably, let alone to diagnose and correct.

We thus decided that the primary determinant for a programming

model should be the prevention of concurrency bugs. This

decision led us through three successive of programming models,

each of which built upon the previous one. Code written in all

three models runs side-by-side in the system, interacting across

programming-model boundaries using shims and wrappers.

4.1 Event-Driven Programming

Initially, we followed an event-driven programming model,

wherein we divided our code into uninterruptable regions that we

encapsulated in continuations. Before a continuation ends, it

often schedules one or more other continuations to execute, either

at a later time or after some time-consuming non-computational

task – such as a disk read – completes. This model reduces

opportunities for race conditions and deadlocks, relative to the

more common approach of programming with multiple execution

threads [24, 27]. Event-driven programming avoids the key

concurrency problem with standard multithreaded programming,

namely the interruption of an executing task by another task that

touches shared state. The event-driven model is significantly less

complex and error-prone than carefully crafting locks and state-

access policies, which when too liberal admit race conditions and

when too conservative can cause deadlocks.

One challenge in writing event-driven code is maintaining a task’s

context across a set of event handlers that collectively implement

the task, particularly as the code evolves and a single event

handler is split into multiple handlers whenever a new I/O call is

introduced. This context is trivial to maintain in a multithreaded

model, because a task is typically performed by a dedicated

thread, whose context is maintained by a stack that is preserved

across I/O calls.

4.2 Cooperative Task Management

The difficulty of managing context in an event-driven program

drove us to back to storing a task’s state on a stack, while

retaining the cooperative scheduling aspect of event-driven

programming. In this cooperative task management (CTM) model

[2], a task is – rather than a collection of event handlers that

bridge between I/O calls – a single block of sequential code with

well-defined yield points at each I/O call. The code between I/O

calls runs without interruption by other tasks, much like an event

handler would run. However, when an I/O call completes, rather

than reconstructing the task’s state from a manually pickled

continuation, the state is already available on the task’s stack.

Compared with multithreading, CTM reduces the opportunities

for a task’s state to be perturbed by another task; however, it does

not completely eliminate these opportunities. In particular, when

a task yields for an I/O call, other tasks may execute, and these

other tasks might access or modify shared state. When the

interrupted task then resumes, it must be prepared for the

possibility that any shared state it had accessed prior to the I/O

call has since changed.

To deal with this situation, we developed a programming idiom

we called the pinning pattern [2§5], in which a task is divided into

two phases. The first phase includes all of the task’s read I/O calls

(disk reads and network RPCs) inside a loop. If any I/O operation

yields, the loop is restarted, because the task can no longer be

certain that any value it has read still reflects the global state.

Disk reads and RPC results are cached in memory, so this I/O

read is unlikely to yield again on the next pass through the loop.

The loop exits only when every read I/O operation executes

without yielding, so at the end of the first phase, the task has a

consistent representation of the portion of system state it cares

about. In the second phase, the task performs its computation,

and it records any state updates and outgoing network messages in

an in-memory buffer. The contents of this buffer are subsequently

written back to the disk or transmitted on the network by a

separate housekeeping thread. Thus, after possibly looping

multiple times through read I/O calls that yield, the task ultimately

executes as an atomic block: The final iteration of the first phase

does not yield, and the second phase never yields because it

contains no I/O operations.

Although a strict adherence to the pinning pattern results in

correct code, it does not lend itself to modularity. For example, a

subroutine that performs both reads and writes cannot be called

from either phase of a task, since the first phase must contain no

writes and the second phase must contain no reads. The pinning

pattern also demands significant discipline from the programmer,

and it is quite unforgiving if the task departs from the pattern’s

strictures in any way.

22

4.3 Atomic Actions

The difficulties of restricted modularity and stringent coding

constraints led us one step further. Our programming model had

progressively evolved toward writing tasks as atomic blocks, so

we finally decided to implement our tasks as full-blown atomic

actions [21]. Our intent was twofold: First, by addressing the

issue of state consistency at a single place in the code, we hoped

to eliminate the class of consistency errors we had experienced

due to the difficulty of honoring the pinning pattern consistently.

Second, we wanted to write our application code in a more

modular, readable, and maintainable style than the pinning pattern

would allow.

We built an application-generic atomic-action substrate, on top of

which application-specific code is written using an action for each

sequential task. The substrate isolates each action’s effects by

mediating access to state, time, and messages.

State – For ease of implementation, we used an explicit state

interface rather than a transparent memory interface. This decision

prevents the application from reusing old data-structure code to

organize its data. Therefore, instead of a simple address space,

the substrate provides an interface of single-key dictionaries with

custom keys. This is nearly as easy to implement as a linear

address space, but it supports sorting, efficient indexing, and

range queries, which largely makes up for the inability to use

standard data structures in the application code.

Atomic state is implemented using redo logs. A redo log is a

buffer of 〈address,value〉 pairs written by an action. By buffering

the writes, the redo log isolates the effects from other actions.

Redo logs are chained, each using the next as its backing store. A

read that cannot be satisfied by any entry in a redo log is passed

on to that log’s backing store. An action is atomically committed

by simply referring to its redo log as the new current state of the

system. An action is atomically aborted by simply discarding its

redo log.

Time – The natural interface to time is to provide the value of the

clock. For example, a host might evaluate whether a lease has

expired by evaluating the expression:

GetCurrentTime() > lease.expiration

An alternate interface is to let the code make Boolean queries of

the time:

IsNowLaterThan(lease.expiration)

The latter approach constrains how much information about time

flows into the application code, which gives the substrate more

freedom and can result in fewer action aborts. Specifically, when

an action queries a time predicate, the substrate evaluates and

records the constraint enforced by the predicate before returning

the result to the application. At the end of the action, if the current

time violates any of the predicate constraints, the action aborts.

Thus, the effective time of each action is the time it commits,

which trivially enforces the temporal consistency of commit order.

Messages – When a message arrives, it is stored into the shared

state, and optionally an action is started to process it. When an

action sends a message, the message is held in a buffer. If and

when the action commits, all buffered messages are transmitted.

If the action aborts, the messages are discarded.

5. DISTRIBUTED DEBUGGING

System components built on the atomic-action programming

model can be deterministically replayed in the distributed system.

We have used this facility to isolate several would-be Heisenbugs.

Although deterministically replaying a distributed system is an old

idea [25], it can be difficult to achieve because nondeterminism

enters a system any number of ways, which makes it challenging

to capture all of its sources and constrain a later run to obey the

observed behavior.

The atomic action model provides ideal support for a replay

system, because isolation requires mediating all of an action’s

access to the outside world. Likewise, action commits are the only

way that a host’s state can change. Therefore, a host is a state

machine whose evolution is completely determined by the

sequence of actions it commits. Each action can be completely

characterized by the action’s identity, argument values, and the

value of time observed by the action.

The programmer must explicitly cooperate with this discipline. It

is forbidden to record state that lives beyond a transaction outside

of the shared state interface, since changes to that state are not

serialized or rolled back upon action abort. As an example, our

pseudorandom-number generator object uses the state interface,

rather than conventional heap storage, to store its state.

The bane of distributed systems implementation is the difficulty of

debugging a system in which data is widely dispersed among

machines. There is no single thread of control to break, and a

crash is not particularly likely to be reproducible because the run

that led to it cannot be deterministically reproduced. Divergence

can arise from the innate entropy of the distributed environment

or from the perturbations of monitoring code.

The ability to deterministically replay the system facilitates

debugging by allowing us to probe the system while ensuring that

it continues to exhibit the broken behavior. Probing may involve

using a debug build with extensive assert checking or printf

logging. It may involve modifying the executable to introduce a

new sanity check, or even to repair the behavior, although a

dramatic repair may make the rerun diverge from the logged run.

Probing may also involve remapping the hosts in the distributed

system onto different physical machines. For example, we have

replayed a multiple-machine deployment on a single physical

machine, in a single process, with a debugger attached.

Reconfiguration cannot involve changing the number of logical

hosts in the distributed system, however, because such a change

would lead to a different set of logs and different behavior.

During replay, we keep the hosts causally synchronized. When a

host’s log indicates it should evaluate an action that depends on

the receipt of a message, the scheduler waits until that message is

actually received from the sending host before proceeding. This

ensures that events and debugging messages occur in a sensible

order in the replayed system.

6. FORMAL SYSTEM SPECIFICATION

When we began developing the distributed directory service

described in section 3.2, we started with the approach we had

always used for distributed-system design: informal specification

using textual description, pseudo-code, and block diagrams. We

quickly found ourselves getting quite lost in the details of the

23

design, largely because the distributed directory service is a highly

constrained design problem: The service must be scalable,

strongly consistent, and resistant to Byzantine faults. Initially, we

were not even clear on what “resistant to Byzantine faults” meant,

but we were concerned that, as the number of BFT groups in the

system grows, so too grows the probability that at least one group

will have more machine failures than it can handle, and we did not

want to let a random faulty group take out the entire system [14].

To tackle these compound challenges, we – slowly and quite

reluctantly – began using formal system specification for the

distributed directory service. We found that a formal specification

can serve as an abstract prototype that calls attention to errors in

the design before implementation begins. This is valuable not

only because the high level of abstraction makes it easy to reason

about the design without getting bogged down in implementation

details, but also because radical changes to the specification tend

to require far less effort than comparable changes to an

implemented system. Although we do not conclude that formal

specification is an appropriate tool for most system designs, we do

believe it can have applicability for subtle and highly constrained

solution spaces, wherein correctness is difficult to reason about.

The benefits of formal specification accrue from two components:

a formal mathematical syntax and the concept of refinement.

6.1 Formal Syntax

For specifying the distributed directory service, we used the

TLA+ language [20], which provides well-defined syntax for set

theory and first-order logic, syntactic shorthand for defining

systems as state machines, and temporal logic for reasoning about

liveness. The set theory is easy to use by anyone with a basic

mathematics background. We found the state machine syntax

quite natural once we thought a little bit about how invariants are

maintained inductively. We used very little of the temporal logic,

because we focused on safety properties rather than liveness

properties. Although the language looks intimidating at first, it is

quite accessible systems builders.

Formal syntax provides three benefits relative to informal

specification: unambiguity, decoupling abstraction from precision,

and explicit indication of dependencies.

Unambiguity – Because math and sets are well-defined, formal

syntax does not admit the ambiguity that can creep into prose

specifications. For example, in our informal specs, we had

written, “If a client holds a name lease on name E in directory D,

then the client implicitly holds a name lease on all nonexistent

children of E.” This rule turns out to be ambiguous, because a

server may have stale information about whether a client has

created a child of E, in which case the server and client interpret

the meaning of an outstanding lease differently. Formal syntax

forces the designer to settle on some unambiguous interpretation

of the abstract idea, even if it is a straw man. As later components

of the design make use of the idea, there is no ambiguity about

what the current specification means; either it satisfies the needed

properties, or it must be changed.

Decoupled abstraction and precision – Text and pseudo-code

tend to couple abstraction and precision. Raising the level of

abstraction is commonly achieved by (in text) leaving out details

or (in pseudo-code) by stubbing out subroutines. High-level

prose is generally imprecise about its meaning, and stubbed-out

pseudo-code is similarly imprecise except in the rare cases in

which an omitted subroutine is well-defined at an abstract level

(e.g., stable sort by case-insensitive Unicode primary key). By

contrast, formal syntax can be employed at any level of

abstraction. For instance, we at first specified our distributed

clock by formally writing down the properties it achieved [13],

using a few lines of TLA+. Later, we went back and replaced this

with a formal description of the messages exchanged between

machines and the corresponding state updates. At either level of

abstraction, the specification was precise about its meaning.

Explicit dependencies – When working with prose specification

documents, it is not immediately obvious how changes to one part

of the specification affect other parts. When using a formal

syntax, one cannot refer to a component of the design except by

explicit reference to the symbol that defines it. This allows the

designer, when making specification changes, to grep for other

definitions that should be inspected to ensure they remain

compatible with the new definition.

6.2 Refinement

Whereas formal syntax helps find errors during the design

process, refinement is a technique that guides the design process.

The technique focuses the process on which ideas are necessary

and helps the designer know when the job is complete. In the

context of distributed systems, the refinement technique involves

constructing three artifacts: a semantic spec, a distributed-systems

spec, and a refinement.

Semantic spec – The semantic specification describes the

intended behavior of the system from the viewpoint of the systems

users. Farsite logically functions as a centralized file server, so

Farsite’s semantic spec defines the behavior of a centralized file

server, namely the file-system operations open, close, read, write,

create, delete, and move/rename. To address the requirement of

resisting Byzantine faults, the semantic spec also specifies how

faults can manifest to the users. A significant challenge was

finding a semantic spec that was neither unrealistically strong nor

uselessly weak.

Distributed-system spec – The distributed-system specification

describes how a set of machines and BFT groups interact:

receiving file-system requests, sending messages, receiving

messages, modifying local-machine state, and returning results of

file-system requests. The distributed-system spec can be regarded

as the main product of the refinement process, insofar as it

precisely describes the behavior of the constituent machines in the

distributed system. Turning a distributed-system spec into a

working system is merely a matter of writing an implementation

for the single-machine components of the system, which can be

done without any further thought about the distributed-system

aspects of the problem.

Refinement – The refinement is a formal correspondence between

the semantic spec and the distributed-system spec. The semantic

spec describes an abstract structure, and the refinement describes

how the distributed, asynchronously updated structures spread out

across the distributed system can be interpreted as the abstract

structure of the semantic spec. Constructing the refinement

guides the construction of the distributed system. When faced

with a problem, we would brainstorm a possible solution in the

distributed system and then ask, “How does this solution refine to

24

the semantic spec?” That simple question consistently led us to

immediately understand which invariants we needed to maintain.

No matter how knotty the distributed data structures in our system

become, our refinement tells us how to interpret them. In

particular, a key concept in the distributed directory service is

authority, which indicates which item of distributed state should

be regarded as the value of a particular semantic datum. The

distributed system must guarantee that its messages and state

updates always preserve the invariant that a single host is

authoritative over any semantic datum, and furthermore that

authority is transferred among hosts in a reasonable way. In this

context, “reasonable” also includes the concept of delegating

authority in a way that restricts the influence of Byzantine faulty

hosts in the distributed system.

6.3 Anecdotal experience

The value of this methodology is highlighted by our experience in

developing the procedure for the move/rename operation.

Although the rename operation is semantically straightforward, at

the distributed-system level it involves up to four hosts interacting

to perform an atomic operation. Moreover, any subset of these

machines may be Byzantine-faulty, and our requirement for

restricting Byzantine faults forbids us from allowing the state of

the non-faulty machines to become polluted. As we developed a

rename procedure, we recorded the distributed-system behavior in

TLA+. Once we had a formally precise description, we could

reason through the behavior, and it turned out that our first

rename procedure was flawed, so we started over with a different

procedure. We repeated this process 19 times, in several cases

fundamentally changing the distributed-system state schema, until

we achieved a distributed-system spec that refined to a reasonable

semantic spec.

If we had gone directly to an implementation without first writing

a distributed-system spec, it would have been far more costly to

make the necessary changes. Furthermore, it would have been

more difficult to understand the distributed-system aspects of the

problem without getting mired in implementation details.

7. LESSONS

Over the course of the Farsite project, we have learned many

lessons, most of which we have presented in earlier papers [1, 15].

Overall, however, two lessons stand out: First, in a real system,

determinism is harder to achieve than you would expect. Second,

a system that first seemed to be addressing a disk problem turned

out to be addressing a network problem.

7.1 Determinism Is Harder Than Expected

Running a service in a replicated state machine requires that the

service be deterministic. Theoretically, this sounds fairly simple,

but in practice, we found that non-determinism creeps into code

from many sources. A striking anecdote illustrates the point:

After much debugging effort, we once tracked down a replica-

divergence bug that turned out to be calls to the system quicksort

function qsort producing different outputs from identical inputs.

Because quicksort is not a stable sort, the function has freedom to

produce different orderings when not all keys are unique. At first

we suspected that qsort does something like using rand() to select

a pivot, thereby causing different invocations with the same inputs

to behave differently; however, investigation revealed that this is

not the case. It turns out that in our test configuration, one

machine in the RSM group was running Windows 2000, and

another was running Windows XP. The implementations of qsort

in Win2K and WinXP differ in a way that can cause them to

produce different results given identical inputs if the inputs have

elements with equal keys. Because the qsort routine is

dynamically linked, the Farsite code picks up different versions of

it on different machines.

The main lesson from this is that code boundaries are not as clear

as one might wish, and any call to any routine that is outside the

controlled code is a potential entry point for non-determinism.

7.2 A Network Problem, Not a Disk Problem

A number of the Farsite team members had previously worked on

Tiger [3], a scalable video file server built from a collection of

personal computers and a network switch. When we started that

project, we thought that that hard issue would be getting the video

data from the disks. After designing and implementing Tiger, it

turned out that once we had the initial idea of how to schedule

disk accesses, the disks weren’t the problem. Instead, managing

the network in terms of overloads, failures and getting the

protocols right consumed nearly all of our time and mental effort.

That is, we concluded that the video server problem was more

about the network than the disk.

We had an analogous experience with Farsite. In the beginning,

we thought that the hardest issue would be finding enough disk

space in order to make sufficient replicas to ensure reasonable file

availability. In fact, the first Farsite publication [4] was a

feasibility study that considered this question, and concluded that

sufficient disk space was available; a second early publication

[11] addressed how to find duplicate files to coalesce to save

space. By the end of the project, it was clear that the hardest

problems involved the directory service, lease protocol, and

consistent distributed crash recovery. That is, Farsite, like Tiger

before it, really was more of a network problem than a disk/file

system problem.

As with many things, this seems obvious only in retrospect. The

difficulty in solving network problems is really a more

complicated version of the local concurrency problem that we

were trying to ameliorate by adopting the single threaded

programming models described in §4. We couldn’t adopt such a

simple strategy across nodes because we needed the concurrency

and we also had to worry about (possibly Byzantine) failures. The

design decision to treat even BFT groups as potentially malicious

extended this problem into the directory service, and gave rise to

much of the complexity there. We were able to solve the file

availability problem using simple statistical models and some

assumptions about usage based on measurements of Microsoft

machines. The protocol design problem required TLA+ and years

of careful thought.

After twice making the same error about identifying where the

difficulty in a system design lies, we hope that we and our readers

can learn from where we went wrong and find new and more

interesting mistakes to make in the future.

8. ACKNOWLEDGMENTS

The Farsite project has benefited from the talents of many people.

In addition to the authors, the project team included Atul Adya,

25

Miguel Castro, Gerry Cermak, Ronnie Chaiken, Jon Howell,

Jacob Lorch, Marvin Theimer, and Roger Wattenhofer. Project

interns have included Kaustuv Chaudhuri, David Ely, Thanos

Papathanasiou, Patrick Reynolds, Rodrigo Rodrigues, Brandon

Salmon, and Dmitrii Zagorodnov. We also thank the many others

who have made contributions and shared illuminating discussions,

including Dimitris Achlioptas, Josh Benaloh, Yuqun Chen, Dinei

Florencio, Tim Harris, Eric Horvitz, David Hovel, Simon Peyton-

Jones, Rajeev Rajan, Balan Sethu Raman, and Dan Simon.

9. REFERENCES

[1] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cermak,

J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, R. P.

Wattenhofer. “FARSITE: Federated, Available, and Reliable

Storage for an Incompletely Trusted Environment,” 5th

OSDI, Dec 2002.

[2] A. Adya, J. Howell, M. Theimer, B. Bolosky, J. Douceur.

“Cooperative Task Management without Manual Stack

Management.” USENIX Annual Technical Conference, 2002.

[3] W. J. Bolosky, J. S. Barrera III, R. P. Draves, R. P.

Fitzgerald, G. A. Gibson, M. B. Jones, S. P. Levi, N. P.

Myhrvold, and R. F. Rashid. “The Tiger Video Fileserver,”

in NOSSDAV ’96, April, 1996.

[4] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer,

“Feasibility of a Serverless Distributed File System Deployed

on an Existing Set of Desktop PCs.” SIGMETRICS 2000,

Jun 2000.

[5] W. J. Bolosky, S. Corbin, D. Goebel, J. R. Douceur. “Single

Instance Storage in Windows 2000.” 4th Usenix Windows

System Symposium, Aug 2000.

[6] M. Castro and B. Liskov, “Practical Byzantine Fault

Tolerance”, 3rd OSDI, USENIX, Feb 1999.

[7] J. R. Douceur and R. P. Wattenhofer. “Large-Scale

Simulation of a Replica Placement Algorithms for a

Serverless Distributed File System.” 9th MASCOTS, IEEE,

Aug 2001.

[8] J. R. Douceur and R. P. Wattenhofer, “Modeling Replica

Placement in a Distributed File System: Narrowing the Gap

between Competitive Analysis and Simulation”, ESA 2001,

Aug 2001.

[9] J. R. Douceur and R. P. Wattenhofer, “Competitive Hill-

Climbing Strategies for Replica Placement in a Distributed

File System”, 15th DISC, Oct 2001.

[10] J. R. Douceur and R. P. Wattenhofer, “Optimizing File

Availability in a Secure Serverless Distributed File System”,

20th SRDS, IEEE, Oct 2001.

[11] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, M.

Theimer, “Reclaiming Space from duplicate Files in a

Serverless Distributed File System”, ICDCS, Jul 2002.

[12] J. R. Douceur, A. Adya, J. Benaloh, W. J. Bolosky, G.

Yuval. “A Secure Directory Service based on Exclusive

Encryption.” 18th ACSAC, 2002.

[13] J. R. Douceur; J. Howell. “Scalable Byzantine-Fault-

Quantifying Clock Synchronization.” Microsoft Research

tech report MSR-TR-2003-67, 2003.

[14] J. R. Douceur, J. Howell. “Byzantine Fault Isolation in the

Farsite Distributed File System.” 5th IPTPS, 2006.

[15] J. R. Douceur, J. Howell. “Distributed Directory Service in

the Farsite File System.” 7th OSDI, 2006.

[16] J. M. Hart. Win32 System Programming: A Windows(R)

2000 Application Developer's Guide, Second Edition,

Addison-Wesley, 2000.

[17] J. Kistler, M. Satyanarayanan. “Disconnected operation in

the Coda File System.” TOCS 10(1), Feb 1992.

[18] L. Lamport. “The part-time parliament.” TOCS, 16(2):133–

169, May 1998.

[19] L. Lamport. “Paxos made simple.” ACM SIGACT News,

32(4):18–25, Dec. 2001.

[20] L. Lamport. Specifying Systems. Addison-Wesley, 2003.

[21] D. B. Lomet. “Process structuring, synchronization, and

recovery using atomic actions.” ACM Conference on

Language Design for Reliable Software, SIGPLAN Notices

12(3), pp. 128-137, 1977.

[22] J. R. Lorch, A. Adya, W. J. Bolosky, R. Chaiken, J. R.

Douceur, J. Howell. “The SMART Way to Migrate

Replicated Stateful Services.” EuroSys 2006.

[23] Microsoft Corporation. “IFS Kit - Installable File System

Kit.” http://www.microsoft.com/whdc/DevTools/IFSKit/

default.mspx

[24] J. K. Ousterhout. “Why Threads Are a Bad Idea (for most

purposes).” USENIX Annual Technical Conference, 1996.

[25.] M. Ronsse, K. De Bosschere, J. C. de Kergommeaux.

“Execution replay and debugging.” Automated and

Algorithmic Debugging, pp. 5-18. 2000.

[26] S. T. Shafer, “The Enemy Within”, Red Herring, Jan 2002.

[27] R. von Behren, J. Condit, E. Brewer. “Why events are a bad

idea (for high-concurrency servers).” HotOS IX. May 2003.

[28] B. Welch, J. Ousterhout. “Prefix Tables: A Simple

Mechanism for Locating Files in a Distributed System,” 6th

ICDCS, 1986.

26

